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In this work we consider how nonlinear hydrodynamic effects can lead to a mean force 
of interaction between two spheres of equal radius a undergoing translational fluctu- 
ations parallel or perpendicular to their line of centres. Motivated by amplitudes and 
Reynolds numbers characteristic of Brownian motion in colloidal systems, nonlinear- 
ities due to motion of the boundaries and to inertia throughout the fluid are treated 
as regular perturbations of the time-dependent Stokes equations. This formulation 
ultimately leads to a prescription for computing, at leading order, the time-average 
nonlinear force for the case of pure oscillatory modes - which represents the Fourier 
decomposition of more general motions. The associated hydrodynamic problems are 
solved numerically using a least-squares boundary singularity method. Frequency- 
dependent results over the whole spectrum are presented for a sphere-sphere gap 
equal to one radius; illustrative calculations are also carried out at other separations. 
Subsequently we extend the analysis of nonlinear drift to a Langevin equation formu- 
lation of the more complex problem of stochastic motion due to thermal fluctuations 
in the suspending fluid, i.e. Brownian motion. By integrating (numerically) over the 
spectrum of frequencies, we quantify how the mutual interactions of all translational 
disturbance modes give rise, on ensemble average, to a stochastic nonlinear force of 
interaction between the particles. It is particularly interesting that this net interac- 
tion - arising from a zero-mean random force - is of 0(1) on the Brownian scale 
kT/a ,  even though it represents a small O(Re) correction at each frequency of pure 
oscillations. Finally, we discuss how the presence of stochastic nonlinear drift would 
lead to non-uniform equilibrium distributions of dilute colloidal suspensions, unless 
one adds to the random force in the Langevin equation a cancelling non-zero mean 
component. 

1. Introduction 
Traditionally it is believed that fluid inertia can be entirely neglected in modelling 

Brownian motion of colloidal particles, an approach which is motivated by two main 
considerations. Firstly, the actual spreading by diffusion is sufficiently slow that a 
Reynolds number based upon the characteristic spreading speed must obviously be 
very small. Secondly, despite the fact that short-time fluid-mechanical transients (e.g. 
Basset history dependence associated with the diffusion of vorticity) can affect certain 
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ensemble-average properties such as the velocity autocorrelation function, mean- 
square displacements are accurately reproduced using quasi-static mobility coefficients 
(Hinch 1975; Batchelor 1977; Russel 1981). Therefore, fluid inertia - which has a 
significant effect (e.g. added mass) only during the hydrodynamic relaxation time - 
would seem to be unimportant as well. Reflecting these considerations, particulate 
diffusion is generally modelled by incorporating quasi-static hydrodynamic mobility 
coefficients (obtained from the quasi-static Stokes equations) into a convective- 
diffusive parabolic equation describing the conservation of probability density in the 
space of particle positions and orientations. 

In the linear theory of Brownian motion as described above, transient effects 
do not contribute to any net hydrodynamic interactions between particles even on 
the short timescale, although there is a well-known drift term associated with the 
configuration dependence of the quasi-static mobility coefficients (57.1 ; cf. Russel, 
Saville & Schowalter 1989, Chap. 3). The present hydrodynamic problem is motivated 
by the observation that the transients can lead to systematic mean forces or motions 
if one accounts for (weak) inertia in the hydrodynamic equations - this despite the 
assumed zero-mean character of the driving thermal fluctuations. In principle, such 
interactions would affect the equilibrium spatial distribution of Brownian particles 
as well as the rate at which they spread apart from one another. Indeed, nonlinear 
stochastic drift could conceivably impact on the collective behaviour of large swarms 
of particles, as embodied, for example, in effective rheological coefficients. It is 
therefore of interest to quantify nonlinear drift interactions as functions of geometric 
and hydrodynamic parameters. 

We assert that inertia of the suspending fluid represents an important and insep- 
arable part of Brownian motion. The reason is simply this: if one decomposes the 
spectrum of random disturbances into its constituent modes, it is evident that each 
frequency leads to a nonlinear force of interaction between particles. Therefore, there 
is no a priori reason to dismiss the possibility that stochastic forcing with a zero mean 
value can produce either net attraction or net repulsion between diffusing particles. 
Although the magnitude and direction of this effect can only be decided by integrat- 
ing over the spectrum of frequencies (which is the detailed calculation developed in 
this paper), the underlying physical concept appears straightforward. Moreover, our 
mechanistic picture of inertial drift does not contradict the ostensibly slow rate of 
Brownian spreading, it merely superimposes an additional systematic force upon the 
traditional formulation. 

As a concrete model which captures some of the features of fluctuating motion of 
particles, and which represents a frequency decomposition (i.e. Fourier transform) of 
general motions, we first study nonlinear drift forces which arise from pure oscillatory 
modes of two identical spheres - either parallel or perpendicular to the line of centres, 
and with arbitrary relative phase. 

Section 2 describes the case of potential flow, which represents the simplest possible 
example of net forces of interaction accompanying zero-mean osci!lations of particles. 
This problem corresponds to the physical situation at extremely high frequencies, and 
therefore provides a useful check of consistency (for the general theory as well 
as for numerical computations) on the subsequent, more complex formulation for 
viscous fluids at arbitrary frequencies. We consider (i) the hydrodynamic approach, 
based upon Euler’s equations; and (ii) Lagrange’s equations, which encapsulate the 
fluid degrees of freedom in virtual masses that depend upon (generalized) particle 
coordinates. Our derivation of the latter from the former ($2.1) is conceptually more 
direct than traditional arguments (Lamb 1932; Birkhoff 1950; Milne-Thompson 
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1968). Subsequently, the general formulas are specialized to deal with two spheres 
of equal size (52.2), and actual numerical calculations of the interaction force as a 
function of separation are carried out using virtual masses and Lagrange’s equations 
($2.3). 

In 53 we develop a general formulation for calculating the mean sphere-sphere 
interaction force at arbitrary frequencies. Nonlinearities arising at the moving bound- 
aries (finite-amplitude effects) and within the bulk fluid are treated as perturbations 
of the time-dependent Stokes equations posed on the fixed, zeroth-order fluid domain 
(53.2). A reciprocal theorem then yields an expression for the time-average interaction 
force in terms of surface and volume integrals involving the leading-order nonlinear 
terms (53.3). In 53.4 the dependence upon relative phase of oscillation is factored out 
by defining special drift-force coefficients. After examining asymptotic behaviour in 
the limits of high and low frequencies (5$3.5-3.8), we rewrite the coefficient formulas 
to take advantage of the axisymmetric geometry (53.9). 

Actual computations (54) for the hydrodynamic problems - potential flow, quasi- 
static Stokes flow, transient Stokes flow - encountered in finding the drift-force 
coefficients are carried out with a least-squares boundary singularity method (Mathon 
& Johnston 1977; Bogomolny 1985; DqbroH 1985; Nitsche & Brenner 1990), by which 
the flow fields are expressed as linear combinations of singular basis functions whose 
poles lie inside the spheres. This numerical technique is general, and can readily be 
extended to treat more complicated geometries (e.g. involving particles in pores ; see 
Nitsche & Brenner 1990). The discussion emphasizes the unsteady Stokes equations, 
the quasi-static case being entirely analogous. Algorithmic details are provided in 
g4.2, 4.3 for the axisymmetric flows associated with oscillations along the line of 
centres. The numerical method is extended to transverse modes in $4.4, in a manner 
that exploits axisymmetry of the geometry even though the actual flows are no longer 
axisymmetric. The frequency-dependent friction coefficients are expressed in terms of 
the expansion coefficients in 54.5. Analogous calculations for transverse oscillations 
in potential flow are outlined in 54.6, leaving axial modes to be treated more simply 
by the method of images (Appendix A; cf. Lamb 1932). For very high frequencies, 
above a certain threshhold value, the numerical scheme begins to lose accuracy. 
Although this would generally signal the need for a boundary-layer representation, 
the sphere-sphere interactions in the outer field are so weak that the first reflected 
field in the Brinkman-like solution gives very good results even at O(1) separations. 
Formulas pertaining to this approximation appear in 54.7. Finally, 554.8 and 4.9 
indicate how the drift-force coefficients are calculated from the hydrodynamic flow 
fields, and establish the accuracy and consistency of our numerical results. 

Our general formulation implicitly incorporates the nonlinear phenomenon of 
steady streaming, i.e. the second-order mean flow set up by oscillatory boundary 
layers when the outer field varies in the streamwise direction (Riley 1966; Batchelor 
1967, 55.13; Hall 1974). In this connection it is worthwhile to mention the work of 
Tabakova & Zapryanov (1982a, b),  who develop a singular perturbation analysis for 
steady-streaming interactions between two spheres in the limit of high frequencies 
and small amplitudes. Our results are examined in relation to theirs in 55. 

Although part of the computed interaction force is ascribable to the steady- 
streaming flow field of one sphere impinging on the other sphere, and vice versa, the 
reciprocal theorem yields the forces directly, and systematically accounts for all of 
the leading-order nonlinear effects. 

To provide insight into the role of nonlinear drift in Brownian motion, we conclude 
with a calculation of the mean nonlinear force of interaction for the case in which the 
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spheres undergo stochastic motion due to thermal fluctuations in the suspending fluid 
($6). For all but pure oscillatory modes the nonlinear terms arising at the boundaries 
and throughout the fluid represent a ‘mixing’ of different frequencies. Our formulation 
of nonlinear drift - which utilizes results from the linear theory of Brownian motion 
(Case 1971; Chow & Hermans 1974; Hinch 1975; Batchelor 1977; Russel 1981) ~ 

indicates how different oscillatory disturbance modes interact with each other to yield 
a net drift interaction on ensemble average ($86.1-6.3). Although the nonlinear terms 
are usually presumed to be vanishingly small (Hauge & Martin-Lof 1973), we argue 
that they should not be discarded - precisely because they represent a systematic 
component in an otherwise zero-mean stochastic process. The resultant nonlinear 
drift force is decomposed into two contributions: (i) a frictional term arising from 
a pole at zero frequency; and (ii) an inertial term obtained by integrating over the 
spectrum of frequencies. Both effects are of U(1) on the Brownian scale kT/a.  This 
order of magnitude of the drift force can be estimated as the result of pressure forces 
p acting over an area U(a2), with pressure fluctuations O(pu2) in which one uses the 
thermal velocity u = O(kT/pa3)f. The physical assumptions by which our analysis 
can be applied to colloidal particles are considered in $6.4. Finally, the stochastic drift 
force is calculated quantitatively by the above formalism in $6.5. 

These results, which rigorously account for fluid degrees of freedom directly excited 
by translational motions of the particles at all frequencies, are compared with a 
simpler nonlinear Langevin equation that involves only particle degrees of freedom - 
the effects of fluid inertia being modelled approximately with virtual mass coefficients 
($7.1). Finally, in $7.2 we consider how nonlinear drift would lead, at least in principle, 
to non-uniform equilibrium distributions of Brownian particles, unless one modified 
the forcing of the Langevin equation to include a non-zero mean component. 

We should point out that in statistical mechanics there is no well-established general 
theory of nonlinear fluctuations to which we can appeal. In the colloidal systems of 
interest in this paper, however, the fluctuations are necessarily small in magnitude, as 
estimated in $6.4. For small fluctuations we expect that the classical and successful 
linear theory can be applied to leading order. The most interesting small correction 
for weak nonlinearities is a steady drift. We return to these issues in $7.3. 

Copies of the tables 1, 3-11 and appendices A-E for this paper are available on 
request from the authors or the editorial office of the Journal. 

E .  J .  Hinch and L. C.  Nitsche 

2. Model formulation for two vibrating spheres in potential flow 
Consider two spheres of radius a oscillating harmonically, with common frequency 

o and amplitude 8, about mean positions that are separated by the gap spacing 2’. 
The vibrations of both spheres are supposed to occur parallel to a specified unit 
vector b, which - as far as concerns the general derivations to follow - may have 
any orientation relative to the line of centres (z-axis). Ultimately the nonlinear drift 
force will be decomposed into two contributions: (i) modes parallel to the line of 
centres (b” = ez), and (ii) modes perpendicular to the line of centres, which - owing 
to transverse isotropy - are encapsulated in the single case b’ = ex. Where it becomes 
necessary to make a distinction between these two cases, we will use the respective 
affices ‘ ( 1  ’ and ‘1’. 

Since time-average properties must show themselves to be independent of the initial 
phase, we can - without loss of generality - specify a sine oscillation for the first 
sphere together with a relative phase shift for the other sphere. Making length and 
time dimensionless with respect to a and o-’, respectively, the positions of the particle 
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centres are given by 
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r l w  = -he, + qq1(t)b, r2(t) = he, + qqz(t)b, (2.1) 

ql ( t )  = sin t ,  q2(t) = sin@ + cp) (2.2) 

with 

and q = / / a ,  L = 9 / a ,  h = 1 + L/2. Utilizing the inertial pressure scale pa2w2, the 
Navier-Stokes equations appear in the following dimensionless form, posed on the 
time-varying fluid domain V(t):-f  

av 1 
at D - + v . v v = - v p  + -v2y, 

v .  v =o,  (2.4) 
with the dimensionless frequency D = oa’/v serving also as the appropriate Reynolds 
number. 

At very high frequencies viscous effects scale out of (2.3), leaving Euler’s equations 
of motion 

a v l a t  + v . v v  = -VP.  (2.5) 
As will be justified through proper accounting for the Stokes layers (§3.6), the problem 
can then be treated from the perspective of potential flow theory. For the boundary 
conditions we then have 

Y a ( t )  = { r  : Ilr - (-l)“he, -qa(t)bll = 11. (2.6) 
For calculating particle dynamics in potential flow it is advantageous to resort to 

the well-known, equivalent Lagrangian formulation, which encapsulates the effects 
of fluid degrees of freedom in variable virtual ‘masses’ so that only ‘generalized’ 
particle coordinates need be considered. Although a standard derivation - expressing 
the total kinetic energy of the fluid as a quadratic form in the generalized particle 
velocities - readily yields expressions for the various virtual mass components, it 
is much more difficult to demonstrate that Lagrange’s generalized forces obtained 
therefrom actually correspond to the pressure forces calculable (at least in principle) 
from the hydrodynamic equations. Theoretical arguments available in the literature 
typically regard the problem as one of eliminating fluid degrees of freedom from 
an overall variational formulation involving both fluid and particle coordinates; cf. 
Lamb (1932), Birkhoff (1950). A conceptually simpler derivation can be based upon 
Euler’s equations, and this development, given below, has close connections with the 
boundary-layer derivation presented in 53.6. 

2.1. From Euler s equations to Lagrangian mechanics 

V ( r ,  t )  = - Vr$, 

The irrotational flow field can be written as the gradient of a harmonic potential, 

(2.7) 
where r$ is uniquely determined by the instantaneous positions and velocities of all 
(spherical) particles. Thus, on the surface of each sphere we have the boundary 

-f Since we are concerned only with incompressible flows, all velocity fields will subsequently be 
understood to be solenoidal without explicit mention of the divergence-free condition (2.4). 
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condition? 
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n,&p/ar, = -njXi ' B  on Y O  = {r : IIr - XP(t)II = R P } .  

Once the velocity potential has been obtained at any instant, Euler's equation (2.5) 
gives for the pressure field, within an arbitrary additive constant, 

P = a#/& - v2/2. (2.8) 
Owing to linearity of Laplace's equation, one can factor out the dependence of # on 
the individual velocities as follows (Lamb 1932, Chap. VI): 

4 = e(t) @r(rj,Xkp), (2.9) 
where the individual potentials @; are given by the boundary value problems 

v2@4 = o in ~ ( t ) ,  (2.10) 

(2.1 1) 

@! + constant, say 0, as r + co. (2.12) 

The generalized virtual masses are defined as the coefficients in the quadratic form 
expressing total fluid kinetic energy in terms of the individual velocities rip : 

(2.13) 

Utilizing the divergence theorem (with Y denoting the collection of all sphere surfaces 
and n the normal vector directed into the fluid), the linear decomposition (2.9), and 
the boundary condition (2.1 1) we obtain 

Thus, one obtains the desired quadratic form for the kinetic energy and the associated 
formulas for the configuration-dependent virtual masses A:! : 

27' = RX?Af, Au! 11 = hB @$nid2r. (2.14) 

Standard arguments based upon Green's theorem demonstrate that the virtual mass 
tensor is symmetric (Lamb 1932, Art. 136), i.e. 

d u b  IJ = &!a 11 for i, j = 1,2,3. (2.15) 

By the usual interpretation, expression (2.14) suggests that one should regard the 

t Here we use Latin affices to distinguish Cartesian components, while individual particles are 
indexed with Greek letters. Repeated indices denote summation, but only when they are both 
subscripts or both superscripts. 
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positions X; as generalized coordinates in a Lagrangian formulation, which now 
involves only particle degrees of freedom. According to Lagrange’s equations the 
generalized (external) forces acting on each degree of freedom take the form 

(2.16) 

But it is not obvious a priori that the Fky possess the same physical significance as the 
corresponding hydrodynamic pressure forces 

P nk d2r, s, (2.17) 

an assertion for which available proofs rely upon either (i) a Hamiltonian formulation 
applied to fluid and particle degrees of freedom together (Lamb 1932, Arts. 135-136; 
Birkhoff 1950, Chap. V, $15) or (ii) arguments involving virtual motions of the 
fluid and the associated virtual power (Milne-Thomson 1968). The derivation below 
proceeds by calculating the generalized forces in Lagrange’s equations (2.16) directly 
from the hydrodynamic equations of potential flow (2.7), (2.8), (2.17).t 

It follows from (2.14) that 

(2.18) 

where summation over y has been suppressed in the second integral. From (2.13) we 
also know that 

Noting the identity 

the volume integral can be rewritten using the divergence theorem and subsequently 
incorporating the boundary condition (2.1 1) : 

- a ( i V 2 )  d3r = l y n j V j m d 2 r  a4 

Thus results another expression for the X i  derivative of the kinetic energy: 

(2.19) 

t Footnote added in prooJ For the simpler case of an isolated body, a direct hydrodynamic 
derivation of Kirchhoffs equations (to which Langrange’s equations reduce in the absence of 
configurational dependence of the virtual masses) was given by H. Lamb (Q. J .  Pure Appl. Maths, 
vol xix, 1883, pp. 66-70). This involved angular forms, which do not arise for the spherical bodies 
considered here. 
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Subtracting (2.19) from (2.18) one obtains for the velocity contribution to the pressure 
integral about sphere y : 

E.  J. Hinch and L. C. Nitsche 

aT 
(-$V2) nk d2r = - - - XIy s9? Vknj d2r ax; 

For the time derivative term we first note that 

Integrating around Yy, and adding and subtracting the expression 

on the left-hand side, gives 

+ X ;  s9. Vink d2r. = + k p q -  a A;, 
ax! 

Noting that 

the above equation reduces to the simpler form 

= - d (7) dT + X ;  s9? Vjnkd2r. dt ax 

(2.20) 

(2.21) 

Combining (2.20) with (2.21), we find 

aT + XT /9y(Vjnk - Vknj) d2r. dt ( ” )  a x ;  ax; (2.22) P n k d 2 r  = - - - - 

The apparent discrepancy detracting from an otherwise correct Lagrangian force 
equation can be shown to vanish by the following argument. 

Consider any (closed) curve %? formed by the intersection of 9’” with a plane x3 = 
constant. If df = (dxl,dx2,0) is the local line element at some point on %?, then 
(nl,nz,O)dl = (-dxZ,dxl,O). Taking a2 to be a surface which spans V while lying 
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entirely within the fluid, it then follows that 
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which must vanish for potential flow. Therefore 

and the same is true of any permutation of the indices, so that the discrepancy term 
in (2.22) vanishes (Lamb 1883). Thus we have 

(2.23) 

where Fl is the external force exerted on YY,  and thereby the force exerted by Y y  
on the surrounding fluid. Subsequent computations of the mean drift force will 
involve the configuration gradient of the kinetic energy a T / a X l  and its relation to 
hydrodynamic quantities appearing in (2.20). 

2.2. Linear oscillations in potential @ow: integral formulas 
The purpose of this subsection is to express the mean drift force for linear oscillations 
in potential flow in terms of surface integrals over the two spheres. This will establish 
the connection between potential flow and the subsequent general perturbative for- 
mulation for arbitrary frequencies ($3). Actual calculations will be carried out in $2.3 
using Lagrange's equations. 

The sphere-sphere interaction force is given, at each instant, by 

+ - + - -  - -  aT  
aZl  dt ("') a i2  a,;, 

AF > 0 for attraction. Owing to time periodicity, the time-derivative 
upon taking the temporal average over one period, so that one obtains 
interaction force 

From (2.20) it then follows that 

[ V 2  n3 - q cos t V3 (n . b)] d2r 

[kV2n3-  qcos(t+cp)V3(n.b)] d2r 

(2.24) 

terms vanish 
for the mean 

(2.25) 

(2.26) 

Relying on the decomposition (2.9) we now write the velocity field V as the sum of 
two contributions, 

V(r,t) = rcost  V[ll(r;t) + qcos(t+cp) V"(r;t), (2.27) 
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where 
(2.28) 

Here, the dependence of V " ]  and Vrs on t is only parametric, tied to the domain of 
definition V(t). Equation (2.26) becomes 

E. J .  Hinch and L. C.  Nitsche 

n -  PI = 6 , p . b  on .yS (a, D = 1 7  2). 

(AF) = q2 ( /y, { i [cos2 t f J  V[ll / I 2  + 2cos t cos(t + cp) V o l  . Vi2] 

+ cos2 tll VL2] 1 1 2 ]  n3 - [cos tcos(t + cp) Vyl + cos2(t + cp) V?]]  (n * b ) }  d2r . (2.29) 

In the linear oscillation regime one neglects the motion of the surfaces of integration, 
regarding ,4p1 and YZ as fixed. To this approximation the fields V[ll and V[21 are 
then independent of the parameter t, so that the time averages affect only the cosine 
terms. Noting that 

) 

(cos t cos(t + cp) )  = ; cos q, 2 (cos t )  = 1 2' 

we define the coefficients, 

which depend only upon the distance between the spheres (e.g. as given by the gap 
spacing, L = 2h - 2). 

Then the mean interaction force can be expressed simply as 

based upon the characteristic inertial pressure scale pa2w2. Starting with $3 we will 
non-dimensionalize with respect to the viscous pressure scale ,&w/a. Thus, we must 
multiply the above result by Q / q  to put it on the latter basis. For comparison with 
future results we thus have 

(AF)linear = ~q (AF) .~  (AF)*(L,v) = S ~ ( L )  + &(L)COSCP* (2.32) 

To avoid confusion with the subsequent pseudo-Brinkman velocity field u(r) ,  we will 
henceforth denote potential velocity fields by w instead of V .  Thereby, with reference 
to the boundary conditions (2.28) we have 

(2.33) VI11 + w"l, yr21 + wi21* 
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w(r) = w[l ] (r )  + cosq w[2l(r) 
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The potential velocity field 

(2.34) def 

satisfies the boundary conditions 

n . w  = n - b  on Y?), n . w  = c0sqn .b  on YT).  (2.35) 

2.3. Linear oscillations via Lagrange’s equations 
For problems of potential flow that involve two spheres or one sphere near an infinite 
plane wall, Lamb (1932, Arts. 137, 138) presents the Lagrangian formulation, and 
applies it to the leading-order interaction at large separations. As details are provided 
by Lamb, we present only a very brief summary, which applies for any direction of 
oscillation b relative to the line of centres. 

Noting that the virtual mass coefficients depend only on the separation L = 
z2 - z1 - 2, the total kinetic energy of the the fluid is 

T = q2 [iAa(L)4: + Ab(L)Gl42 + ida(L)4:] 7 

where for spheres of equal size we can write 

(2.36) 

Taking the derivatives with respect to z1 and z2 and subtracting according to (2.25) 
gives for the mean interaction force (positive for attraction), 

def def 
&a = J?p = A22, Ab = A 1 2  = A 2 1 .  

(2.37) 

If the amplitudes of vibration are small then any accompanying temporal variations 
in the argument L can be neglected at leading order, leaving 

dAa d d b  (AF) = -q’ -<~~~’ t+co~’( t+q))  - 2q2-(c0~t cos(t+cp)). 
dL dL 

Therefore, 

(2.38) 

which applies equally to axial and transverse oscillations. 

specific azimuthal harmonics involved in each case, viz. 
There is no coupling between motions in the x-, y -  and z-directions, owing to the 

A: = o for i # j .  (2.39) 

This fact, together with (2.15), means that the set of virtual mass coefficients (2.14) 
can be reduced to four independent quantities, 

Ah + d l 1  - A 2 2  

A! + A;; = 

A: t A:: = A;; = A;; = A?;;, 
12 - A 2 1  - A 1 2  - A 2 1  

+ d l 1  - 11 - 22 - 22- 

33 - 33, 
21 

The coefficients in (2.32) are therefore given by 

(2.40) 

(2.41) 

FLM 256 14 
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1 -  

(4 

RGURE 1. Linear oscillations in potential flow us. viscous flow. The reduced mean interaction force 
(AF). (positive for attraction) between two vibrating spheres is plotted as a function of separation 
L for in-phase (cp = 0) and opposite-phase (cp = n) oscillations, both parallel and perpendicular to 
the line of centres. Solid curves represent the limit of potential flow, whereas the cases C2 = 1/16 
and a = 4 are distinguished using dotted us. dashed curves, respectively. (a) Axial oscillations with 
rp = 0. (b) Axial oscillations with rp = n. (c) Transverse oscillations with cp = 0. ( d )  Transverse 
oscillations with rp = n. 

For two spheres moving along their line of centres, the method of images (Lamb 
1932, Art. 98) can readily be carried to high order by computer to evaluate the 
functions and A:&) with arbitrary accuracy. Details of this calculation 
appear in Appendix A. To compute the variable masses &:(I,) and A i ( L )  we apply 
a numerical surface integration of (2.14) to the potentials @: (a = 1,2), which are 
calculated numerically with a least-squares boundary singularity method as described 
in $4.6. In either case, numerical differentiation (by central differences) with respect 
to L then yields the mean force coefficients according to (2.41). These are tabulated 
as functions of separation L in table 1, along with the virtual masses. 

Figure 1 shows how the reduced mean interaction forces (AF)!(L,  cp) and ( A F ) i ( L ,  cp), 
cf. (2.32), vary with L for in-phase (cp = 0) and opposite-phase (cp = n) vibrations of 
the two spheres. Relative motion along the axis leads to higher velocity - therefore, 
lower pressure - in the gap, and hence to net attraction between the spheres; net 
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repulsion accompanies the centre-of-mass mode (Lamb 1932, Art. 138). The opposite 
behaviour is observed for motion perpendicular to the axis. For both axial and trans- 
verse oscillations, the attractive and repulsive forces become asymptotically the same, 
decaying like LP3, as L + co (Lamb 1932, Arts. 98, 99, 137, 138). For comparison 
(to be discussed in $5),  the graphs also show some corresponding results pertaining 
to the case of viscous oscillatory flow. Only at high frequencies (G! 2. 100) does 
the viscous interaction force come quantitatively close to the asymptotic limit from 
potential flow; this will be seen in figure 3, below. 

3. Nonlinear drift forces at arbitrary frequencies 
Below we begin with the full nonlinear Navier-Stokes equations describing the flow 

field surrounding two oscillating spheres of equal radius. Once again, the general 
derivation applies for any direction of oscillation b. The mathematical problem is then 
simplified by expressing the inertial nonlinearities arising at the moving boundaries 
and within the volume of the fluid as small perturbations of the time-dependent Stokes 
equations. Computation of the resulting nonlinear force is facilitated by application 
of a reciprocal theorem. In the limit of infinite frequency, the general formula reduces 
to the result from Lagrange's equations in potential flow. 

3.1. Model formulation for two vibrating spheres 
We refer again to oscillations of the two spheres according to (2.1) and (2.2). In dealing 
with viscous flow it is advantageous to non-dimensionalize velocity with respect to 
k'o rather than a o ,  utilizing the corresponding characteristic viscous pressure scale 
p(k'w)/a (Landau & Lifshitz 1959, $24). Then the Navier-Stokes equations appear in 
the following dimensionless form, posed on the time-varying fluid domain r ( t )  : 

(3.1) 
av 
at 

G!- + Q q V . V V  = -VP + V V ,  

with the boundary conditions 

V ( r , t )  = bq,( t )  on Y , ( t )  = ( r  : IIr - (-l)"he, - qq,(t)bll = l} .  (3.2) 

Nonlinear effects, which are due to (i) inertia within the bulk fluid and (ii) motion of 
the boundaries on which the no-slip conditions are imposed, are thus seen to appear 
as corrections at O(q).  The relevant Reynolds number is now 

At high frequencies we need q << G!-' in order to be able to linearize about negligible 
inertia in the fluid (Re << 1). This condition is satisfied in the case of Brownian 
motion, as will be verified in $6.4. 

3.2. Perturbation about small inertia and amplitude 
To linearize the equations we introduce a perturbation expansion in powers of q, 
defined on the undeformed fluid domain V(O) : 

V ( r ,  t )  = V(O'(r, t )  + q V(l)(r ,  t )  + ~ ( q ' ) .  (3.4) 
14-2 
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Substituting this expansion into (3.1), and transferring the boundary conditions (3.2) 
to thejxed surfaces Yr), we obtain 
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V(O)(r,t) = bG,(t) on Y ? ) ~  (3.6) 

(3.7) 
a - a- - Vp") + v2 v(1) = fi y(0) . v y@)  

at 

V(')(Y, t )  = -qn(t) b . v v(O)(Y, t) on 9;). (3.8) 

3.3. Mean nonlinear force of interaction 
We shall briefly skip ahead in more detail to the first-order problem to determine 
what is needed from the zeroth-order solution. In order to obtain the leading-order 
mean drift force it is sufficient to solve for time-averaged quantities. Applying the 
time average to (3.7) and (3.8) gives the following Stokes flow problem, wherein the 
zeroth-order inertial term appears as a prescribed volumetric force :t 

- V(P(')) + V2( V " ) )  = sz( Po) . VV'O)), Y E V ( O ) ,  (3.9) 

(P) = -(qd((t)  b . v V'')(r, t)) on 9;). (3.10) 
To make use of the reciprocal theorem, let d(v) and T ' ( r )  = -1p' + [Vu' + (Vd)+] 
represent the velocity and stress fields resulting from the 'test' Stokes flow problem 

-Vp' + V2d = 0, Y E V ' O ) ,  (3.1 1) 

u' = e, on ~ f ' ) ,  U' = -e, on ~ f ' .  (3.12) 
By substituting (3.9) - (3.12) into the reciprocal theorem, 

one then obtains for the mean interaction force (AF) = (F1 - F2) (positive for net 
at traction) 

+ JYp (q2b . v Y O )  . T' . n d2r u' * (V'O) . V Vco))  d'r] . (3.14) 

By this formula, the effect of fluid inertia appears to be decomposed into finite- 
amplitude and volumetric contributions, to be described below by separate coefficients. 
However, it should be borne in mind that the formal distinction is only tied to the 
Eulerian form of the hydrodynamic equations, and would not arise in the equivalent 
Lagrangian formulation: for, the latter contains motion of the boundaries within the 
mapping of material points. 

t That inertia of the fluid is negligible - even at high frequencies - in the time-average, first-order 
problem follows from smallness of the effective Reynolds number for steady streaming, Re' = 
= ?Re (Batchelor 1967,8513; Tabakova & Zapryanov 1982a,b); cf. (3.3). 
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By using the divergence theorem the inertia volume integral can be rewritten in 
either of the following two equivalent forms: 

- s,(. J . ( V'O' . VV'O') d3r 

lym J * ( Yco' x (V x V'O')) d3r (3.15) 

(3.16) 

where Vu' can be replaced by the symmetric rate-of-strain tensor 

D' = 2 [v u' + (VJ)+] . 
At high frequencies the first alternative representation (3.15) consolidates the vol- 
umetric contribution of inertia within the Stokes layers surrounding the particles. 
The latter volume integral (3.16) involves only V'O', not its derivatives, so that the 
contribution from the Stokes layers decays asymptotically like their thickness (Q f ) as 
52 -+ 00. In effect, the high-frequency behaviour is banished to the far field: inserting 
the irrotational outer solution into (3.16) should reproduce the results from potential 
flow. This will be verified below in $3.5. 

3.4. The drift force coeficients 
In order to solve the zeroth-order problem ($3.2) it is convenient to write the solution 
in complex form, ultimately taking real parts at the end to form the time-average 
quantities entering the drift force expression (3.14), (3.16). We shall also decouple the 
disturbances due to the individual particle motions. For this purpose we define 

Q l M  = 1 *-l e it and Qz( t )  = i-lei(t+d, (3.17) 

so that 
qa = Re[Q,I (a = 1,2). (3.18) 

Furthermore, we introduce the two complex velocity fields d1](r) and d2](r), each of 
which satisfies the Brinkman-like equation 

-iQu - Vp + V2u = 0, (3.19) 

but with different boundary conditions: 

,[a1 = daPb on 9:) (a,P = 1,2). (3.20) 

Then 

The mean drift 
substituting (3.18) 
that 

(Q1RQd = 
( Q ~ R Q ~ ~ )  = 

(QtRQd = 
(QZRQIR) = 

V'O'(r, t) = Re[Q,(t)d'](r) + Q2(t)dZ1(r)]. (3.21) 
force of interaction between the two spheres is then obtained by 
and (3.21) into (3.14), (3.16). To simplify the expressions, we note 

with analogous equations for ( Q I R Q l R ) ,  etc. Furthermore, whether the spheres oscillate 
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parallel or perpendicular to the line of centres, the integrand in (3.16) has mirror 
symmetry about the plane z = 0. This follows from fore-aft symmetry of the 
axisymmetric Stokes test problem (3.1 l), (3.12), whereby 
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o:, (-2, P )  = o:, ( z ,  P ) ,  

q A - 2 ,  P )  = - D:,(Z, P ) ,  

DL,(-Z, P )  = q J Z ,  PI ,  

o;+(-z, PI = q&, P),  
together with (3.49), (3.50) and (3.52) appearing in 53.9 below. 

dicular to the line of centres - can be written in the concise general form 
Thus, the mean interaction force (AF) - for oscillation either parallel or perpen- 

(AF) = 5 2 ~  (AF). = 5 2 ~  [%1(52;L) + %2(52;L) cos ~ p ] ,  (3.23) 

with the (real) coefficients Ci decomposed into the finite-amplitude and volumetric 
contributions, viz. 

Ci = Ai + Bi, (3.24) 

Here +(O) denotes the semi-infinite fluid domain on one side, either right or left, of 
the plane z = 0. 

3.5. The limit of potentialflow 
We are now in a position to establish the connection between the inertial drift force 
at high frequency and linear oscillations in potential flow ($2.2). As observed for 
(3.16), the formulas (3.25) giving B1 and B2 relegate the eflect of vorticity to the far 
field, even though vorticity is actually generated at the boundaries. Thus, we can take 
the limit 

ugl + ,Ia], $1 + o as 52 + 00 

throughout the whole fluid - in particular, right up to the sphere surfaces, without 
considering Stokes layers. In this limit the equation for B2 becomes 

, c  

(3.26) 

To reduce this expression we first note that, owing to the irrotational nature of d1l 
and w L21, 

rr' . [W[ll . VW[21 + w[21 . vw"1 ] = v * [d(w['l . w[21)] . 
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Combining this with the general identity 

J . [w[ll . Vw[2] + ,[21 * Vw"]]  = v . [w[11(w[21 . J )  + w[21(w[11 . J ) ]  

- V J  (w[11w[21 + w[21w[11) 

there follows 
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VU' : (w[11w[21 + wPlw[ll)  

= v .  [,"I(w[21 * u') + w[2l(w[ll . J)] - v .  [U'(w"I . w"')] . (3.27) 

Now we can apply the divergence theorem to the volume integral (3.26), to obtain 

4 , .  

Substitution of the boundary conditions 

, I 2 ] )  d2r. 

(2.28) and (3.12) then gives 

[wNI . w[2In, - w3 ['I (n 1 b)] d2r - A J [w"] * w[21n3 - wyl(n - b)] d2r. 
B2 = 5 yp ' J  2 yp 

(3.28) 
Comparing with (2.30) we see that B2 -+ A2 as SZ + co. In a similar fashion one 
can show that B1 + bl as well, thereby establishing that the general perturbative 
formulation is consistent with potential flow in the high-frequency limit. 

Owing to the i2-l scaling of the boundary-layer thickness (§3.7), the finite-amplitude 
coefficients A1 and A2 decay like SZ-4 as SZ --+ 00. This is consistent with the fact that 
the mean interaction force in potential flow is, at leading order, unaffected by the 
motion of the boundaries.? 

3.6. High frequencies and thin Stokes layers 
The integral formula (3.16) enabled us to pass from viscous flow at high frequencies 
to potential flow without having to deal with vorticity boundary layers. Nevertheless, 
it is worthwhile to re-examine the high-frequency limit from the boundary-layer 
perspective. Returning to the volume integral in (3.14), we divide the domain Y ( O )  

into a subset YBL , composed of thin boundary layers at the sphere surfaces, and the 
remaining volume Y", throughout which the velocity field u(r) = d'](r) + d"d2](r) is 
effectively irrotational. To leading order the outer field is exactly in phase with the 

t For potential flow there is also a finite-amplitude effect, but it is of an entirely different nature, 
being a second-order correction - at overall order O(q4) - to the leading-order drift force, which is 
proportional to q z ;  cf. (2.31). This is readily verified in the formulation using Lagrange's equations 
(62.3) by Taylor expanding the effective mass terms in (2.37) about the mean separation L to take 
into account the O(q) sinusoidal variations in position. The O(q3) terms vanish upon taking the 
time average, leaving the correction to fourth order. 
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motion of the boundaries (cf. 43.7). Thereby, 
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uR(r) = w(r),  uI(r )  = singod21(r), r E Vm, 

with w given by (2.34). 

with the boundary conditions (3.12), the outer volume integral in (3.14) becomes 
Noting that d * (w . Vw) = V * (u’w’) and using the divergence theorem together 

(3.29) 

Here, 97 and 9 y  are the ‘edges’ of the boundary layers, i.e. the surfaces separating 
VBL from Vw. To the present order of approximation, one may take the surface 
integrals over 9y) and 9;) instead. 

To evaluate the boundary-layer contribution to (3.14), one observes that the velocity 
relative to each sphere is effectively tangential throughout VBL . Defining the constants 
U’ and V such that d = U’e, and u = Vb over the particular sphere in question, 
one can write 

Y = Vb + uie, within V r .  
To leading order the velocity gradient is then 

au; 
ar 

Vv = - i e o ,  

and throughout the boundary layer the integrand can be approximated as follows 

~ ’ [ Y R  . VYR + U I  * VY~] = U’ + VI- (b * i ) (e ,  * ee). ar 1 
Integrating this quantity across the boundary layer we obtain at each position 19 

- U’{ VR[(ve.R)O0 - (v&)o] + V, [(uir)“ - ( ~ ~ , ) ~ ] } ( b  . ;) sin 8, 

where 0 refers to the sphere surface, and 00 denotes the outer limit of the inner 
solution. Now, u i  vanishes owing to the stick boundary conditions, while matching to 
the inner limit of the outer solution means that 

- ( v i R ) ~  sin 8 = w3 - vRb3, --(~i,)~ sin 19 = sin q w f ]  - vZb3. 

Thus, the volume integral over V”“ becomes 

- f J 2 y B L  
U‘ [YR * V U R  + U I  * Vu1]d3r 

with 97 and 9 y  indistinguishable from 9y) and Y?). 
Combining the inner and outer contributions to the volume integral in (3.14), there 
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follows to leading order for high frequencies 

- [cos (pw3 + sin2 qw?]] (n 1 b) d2r. 1 
Exploiting the decomposition (2.34), this result can be shown 
the representation (2.30), (2.32) derived previously for potential 
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(3.31) 

to be equivalent to 
flow. Moreover, via 

(2.20) and (2.25) one sees a direct connection between the preceeding considerations 
of vanishingly thin Stokes layers and Lagrange's equations. 

3.7. Remarks on the O(SZ-4) correction; the first rejection 
We turn our attention now from potential flow (the limit of infinite frequency) to high- 
frequency asymptotics for the unsteady Stokes velocity field v['](r) .  With reference 
to the friction coefficients S!, and &$ that are defined below in 94.5, we note that 
at leading order the asymptotic behaviour as SZ + co is given by the corresponding 
virtual masses; the first correction appears at order SZ-i, viz. 

(3.32) 

The nonlinear drift force (AF) .  also becomes linear in SZ-4 as SZ + co at fixed 
separation L., 

The O(52-2) corrections stem from two effects: (i) finite thickness of the Stokes 
layers; and (ii) rearrangement of the outer irrotational solution relative to the motion 
of the boundaries. This can readily be seen from the simpler problem of an isolated 
vibrating sphere, for which the solution can be written in the form 

C:,/SZ - id!, + o(sz -~) ,  ~ $ / s z  - iA$  + o(~z-4). 

~ ( r )  = bjPij(r) ,  (3.33) 
with 

(3.34) 

Here 

and 

(3.36) 

The first term appears like the dipole solution in potential flow - except for the factor 
G(y) which mixes real and imaginary parts (in-phase and out-of-phase components), 
and therefore appears like a shift in phase relative to the motion of the sphere. 
The second term represents the Stokes layer, whose contribution to the velocity field 
decays exponentially with distance from the surface. 

A more precise interpretation of the first term is as follows: owing to mass 
conservation, the oscillatory boundary layer drives a flux normal to the surface given 
by the surface divergence of the tangential flux, integrated across the boundary layer. 
Explicitly, 

G(x) = 1 + 3 ~ - '  + 3x-', 
H ( x )  = 1 + x-l + x-2. 

Efflux = - 
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at leading order, where the superscript o denotes the zeroth-order irrotational velocity 
field evaluated at the surface (Batchelor 1967, $5.13). The solution for an isolated 
sphere in potential flow, a source dipole, is such that the boundary-layer efflux has 
the form 
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which happens to coincide with the normal velocity component at the surface due 
to motion of the sphere as a whole (with velocity 3y-'b). Thus, the boundary-layer 
efflux can be interpreted as a phase shift of the outer irrotational field at order y-I. 
In the presence of hydrodynamic interactions between the spheres, the symmetry 
necessary for this simple interpretation does not generally exist? - hence the need 
for some kind of matching procedure to determine the boundary conditions for the 
outer irrotational field. (See Sangani, Zhang & Prosperetti 1991, for many-particle 
problems associated with the acoustic behaviour of bubbly liquids.) 

Because our problem involves only two spheres, we can proceed more simply by 
the method of reflections. This is developed by Kim & Russel (1985) for calculating 
drag coefficients in the analogous case of Brinkman flow - with arbitrary screening 
length. As will be discussed below, their general procedure must be modified in order 
to obtain an explicit, uniformly valid expression for the velocity field. 

As long as the Stokes layers are well separated (a >> L-2), each particle experiences 
only the disturbance due to the outer irrotational field of the other (cf. Sangani 1991). 
Therefore, the hydrodynamic interaction is as weak as that characteristic of potential 
flow, even if the Stokes layers are not thin compared with the radius of the spheres. 
The first reflected field, originating from sphere 2 to cancel out the disturbance felt 
at its surface due to the incident field b .  P(r + he,) centred about sphere 1 ,  gives the 
velocity field uniformly within an error of O(e6), where E = ( L  + 2)-'. To this order 
of approximation, it is sufficient to cancel only the constant, linear and quadratic 
components of the incident field. Any higher corrections in the Taylor series would 
be mixed with the second reflection from sphere 1 ,  and are neglected here. (This 
simple approximation will be seen to give very accurate results in @5 and 6, below.) 
Explicitly, one can write 

with 

f See also Lawrence & Weinbaum (1988) in connection with the unsteady drag on a spheroid. 
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and 

(3.39) 

(3.40) 

Xj  = 3b363j - bj, 
q k  = (bj& + bk&j) + b3(6jk - 583j63k), 

Zjkl = bj(6kl - 563k631) + bk(6jl - 563j631) + bl(6jk - 583j63k) 
- 5b3(6jkS31 + 8jl63k + dk163j - 783j63ka31). 

Here we have defined the following functions: 

i I(x) = 1 + 6x-' + 15xP2 + 1 5 ~ - ~ ,  
J ( x )  = 1 + 2 x 4  + 3x-2 + 3x-3, 

K ( x )  = 1 + 4x-' + 9 ~ - '  + 15xP3 + 1 5 ~ - ~ ,  
L(x) = 1 + lox-' + 4 5 ~ - ~  + 1 0 5 ~ - ~  + 105xP4. 

The expressions for Qijk and &jkl have been simplified by using the facts that 

Ykk = 0 and Z j k k  = zkjk = Zkk j  = oj. 

The first reflected field appears only at O(e6) in the vicinity of the moving sphere. 
To the degree of approximation represented by (3.37), the sphere-sphere interaction 
is therefore not felt inside its Stokes layer. Furthermore, within an error of O(e4) both 
Stokes layers induce only a phase shift between the outer field and their respective 
spheres. Starting with the O(e4) correction, the simple phase-shift interpretation ceases 
to apply. We note that, as long as Q and e are chosen such that the Stokes layers 
do not overlap, we have the following asymptotic behaviour of the finite-amplitude 
drift-force coefficients of (3.25) : 

A1 = 0 ( 1 ) ,  A2 = O(e3). (3.41) 

It is worthwhile to compare (3.37) with the multipole expansion given by Kim & 
Russel (1985) for the first reflection. With the aim of calculating drag coefficients, they 
proceed by systematically cancelling the moments of the disturbance stress jield felt at 
the surface of sphere 2 (monopole, dipole, quadrupole, etc.), rather than by cancelling 
the successive gradients of the incident velocity field. For our case of well-separated 
Stokes layers, (3.37) is, of course, equivalent to their formulation; but it involves a 
reordering of the terms. For example, because the force dipole does not completely 
cancel the linear part of the incident field, our O(e4) term contains the contribution 
of a higher multipole. 

3.8. Asymptotic behaviour at low frequencies 
Based upon the asymptotic form of the pseudo-Brinkman velocity fields u['](r) at low 
frequency, one can deduce the scaling of the coefficients Ai, Bi of (3.25). Although 
general results are available in terms of inner and outer expansions (see e.g. Kanwal 
1964), our present aim does not require such detailed arguments. First of all, if we 
denote by u['](r) and uL2](r) the Stokes velocity fields that satisfy the same boundary 
conditions (3.20) as the Brinkman velocity fields u['I(r) and d2](r) ,  then 

uF1(r) -, u[*l(r), ufl(r) -+ o as Q -, 0, 
uniformly in position r within any bounded region of space. 

Exact expressions for the singular solutions will be given in $4; but for now it 
is sufficient to note the following expansion of the pseudo-Brinkman point force 
singularity S(r)  in powers of Q f  (Howells 1974; Pozrikidis 1989b): 

(3.42) 
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with S{O}(r) the Stokeslet. This expansion converges at any fixed position r, but not, 
of course, uniformly in r - precisely due to the far-field singular behaviour. 

If one considers the solutions dal(r) as being generated by areal distributions of the 
force singularity over the two sphere surfaces (Howells 1974), then it is clear that the 
near-field correction at O(y) is a uniform flow, which has no effect on VvraI(r). The 
frequency dependence of the gradient is therefore felt first at O(y2) = O(Q) .  Therefore, 
from (3.25) it follows that 
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Ai (Q;L)  - Y,("'(L) + Y"'(L)Q as Q -+ 0. (3.43) 

B,(Q;L) - T,{O)(L) + p ( L ) d  as S2 -+ 0. (3.44) 

Proceeding to the inertia drift force, we observe that the volume integrals (3.25) giving 
the coefficients Bi do converge if we insert (u["],O) in place of ( u ~ ~ , u ~ ~ } ,  i.e. 

Thus, the dimensional drift force ( A F )  scales asymptotically like Qq(AF) . (O;  L) at low 
frequencies; cf. (3.23). 

It is also true that B!(O;L) = Bi(0;L).  To show this, observe that u[*] - u['] is 
precisely the Stokes test velocity field d from (3.11)7 (3.12). At S2 = 0 the alternative 
volume integrals in (3.14) and (3.16) are then seen to be equivalent, whereby 

Bi'(0;L) - Bj(0; L) = - 
r r 

V J  : u'dd3r = 0. (3.45) JA JV., VU' : JJ d3r = 

Although there appears to be no simple relation between Al(O;L) and A2(O;L), the 
above result does have a counterpart involving the finite-amplitude coefficients - (6.21) 
below, which arises in the stochastic considerations of Brownian motion (56.3). 

Finally, in connection with $4.5 below it is useful to consider the expansion (3.42) 
with reference to the frequency-dependent friction coefficients, for motions both 
parallel and perpendicular to the line of centres. The contribution from the uniform 
field gives rise to an O(S24) correction to the individual friction coefficient of each 
sphere with the other held stationary, i.e. 

(a = 1,2) (3.46) 

But these two corrections exactly cancel out in the sphere-sphere interaction when the 
spheres move in opposite directions. Consequently, the friction coefficient describing 
relative motion has the following asymptotic behaviour at low frequencies: 

(3.47) 

3.9. Axial and transverse modes 
At this point we introduce different notation for oscillations parallel and perpendicular 
to the line of centres. Axial modes (b" = e,) are described by the axisymmetric velocity 
fields dOL1,II(z, p ) ,  for which the no-slip boundary conditions (3.20) need only be imposed 
along the generating arcs of the spheres, 9:). Explicitly, 

v ~ l . l l  = g a b  u ~ l . l l  = 0 on 9;) (a, P = 192). (3.48) 

Note the following relations in circular cylindrical coordinates (z, p)  : 

z 7 7 up P (3.49) [21,11 ( z ,  p) = - VllI>ll (-z p )  . u~'l.ll ( z  p) = vl11.11 (-z p) 
3 ,  

there are, of course, no azimuthal components. 
For transverse oscillations (b' = ex), we exploit the fact that the azimuthal depen- 

dence of the flow is contained entirely within the first harmonic in 4, whereby each 
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velocity field u["I,'(v) can be expressed in terms of a corresponding set of axisymmetric 
functions, denoted by I *, viz. 

(3.50) 1 u p ( z ,  p, 4) = Up''(z, p) cos 4, 
ujpl"(z, p, 4) = ujpl,L*(z, p) cos 4, 
utl*'(z, p, 4) = ~ ~ 1 , ' '  ( z ,  p) sin 4. 

With the 4 dependence factored out in this way, the boundary conditions (3.20) again 
reduce to conditions imposed on the generating arcs 2r); cf. Kim & Russel (1985), 
Karrila & Kim (1989) : 

= 0, up' = B O B ,  u4 ["IJ' = - 8 a B  on 2;' ( c r , ~  = 1,2). (3.51) 
We then observe the relations 

up2]'1* (z, p) = 
[21,"(Z, p) = 

u y  ( z ,  p) = 

Given axisymmetry of u[al,il and (3.50), one can immediately carry out the azimuthal 
part of each surface or volume integral appearing in the coefficient formulas (3.25). It 
follows that there are no coupling translational modes in the x-, y -  and z-directions; 
the drift-force contributions from these perpendicular modes simply add to each 
other. The surface integrals reduce to line integrals over the arcs 2r), while the 
volume integrals become areal integrals over the z , p  projection d of PCo). With 
these simplifications the coefficient formulas (3.25) for both axial and transverse 
oscillations can ultimately be written in the general form 

* (0) 

Bo = /J(o) r y ( z ,  p) 2np dzdp. (3.53) 

Explicit expressions for the functions A : ,  A:, Ti1', ri  are given in Appendix B. 

4. Numerical solutions via a boundary singularity method 
In order to evaluate (numerically) the coefficient integrals (3.53) one requires 

accurate solutions of the Stokes flow problem (3.11), (3.12) and of the imaginary- 
permeability version of the Brinkman equation (3.19), (3.20) for both axial and 
transverse motion of the spheres. Morover, for calculating the virtual masses and 
checking overall consistency of the computational scheme, it is also useful to carry 
out the corresponding calculations for potential flow. 

Although separation of variables in bipolar coordinates yields an exact series 
solution of the axisymmetric Stokes problem (Stimson & Jeffrey 1926; Brenner 1961), 
the Brinkman equation is not similarly separable (Kim & Russel 1985). For both 
Stokes and Brinkman flow, numerical techniques based upon singular solutions prove 
to be efficient for calculating hydrodynamic coefficients for two spheres at fairly small 
separations; e.g. the multipole-collocation technique (Gluckman et al. 1971 ; Kim & 
Mifflin 1985; Kim & Russel 1985). 

We utilized a least-squares boundary singularity method (Mathon & Johnston 1977; 
Bogomolny 1985; DqbroH 1985; Nitsche & Brenner 1990), 'LSBSM', to calculate 
the flow fields and hydrodynamic coefficients for all cases except the axisymmetric 
potential problem, which was tractable more efficiently by the method of images 
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(Lamb 1932, Art. 98); cf. Appendix A. Based upon this numerical scheme, the 
calculations in this paper could readily be extended to treat nonlinear drift phenomena 
in pores ($7.3); cf. Nitsche & Brenner 1990). 

The LSBSM algorithms for potential, Stokes and Brinkman flow are all analogous, 
differing mainly in the respective sets of singular basis functions, and in the details of 
the boundary conditions for inviscid versus viscous flow. Two separate FORTRAN 
codes were developed to treat the respective cases of axial and transverse oscillations. 
In combining the LSBSM subroutines for quasi-static and transient Stokes flow (and, 
in the latter case, also potential flow) into each program, the implementation was 
streamlined by pooling certain elements of the calculations, as will be discussed below 
in $4.9. 
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4.1. General description of the method 
Numerical methods based upon hydrodynamic singularities have been reviewed very 
recently and comprehensively in the works of Weinbaum, Ganatos & Yan (1990), 
Kim & Karrila (1991), and Pozrikidis (1992). The description that follows is therefore 
kept short. 

In the traditional boundary integral method, the flow fields are given by a contin- 
uous distribution of singular solutions over the solid surfaces, of which the unknown 
density is the solution of an integral equation that results from imposing the no-slip 
boundary conditions (Youngren & Acrivos 1975; Karrila & Kim 1989; Pozrikidis 
1989~).  Because the generating singularities lie precisely on the surface(s) at which 
the fluid velocity is to be prescribed, one must evaluate singular integrals. 

The boundary singularity method avoids singular integrals by representing the 
solution as a superposition of singular solutions whose poles lie on an auxiliary- 
boundary which is displaced a certain distance behind the physical boundary, i.e. 
inside the solid phase (Weinbaum et aE. 1990). The strengths of the singularities 
are optimized in a least-squares sense with respect to no-slip residuals calculated at 
discrete points on the sphere surfaces. Overdetermining the system with an excess 
of boundary criteria is intended to make the method more robust with respect to 
the choice of boundary points than collocation; cf. Gluckman et al. (1971), Kim & 
Russel (1985), Nitsche & Brenner (1990). 

Reasonably accurate results have been obtained in Stokes flow with star-shaped 
clusters of a few (e.g. 7 or 13) poles positioned around the centres of the particles 
(DqbroQ 1985), a scheme which could be regarded as a pseudo-multipole technique 
in which difference quotients approximate higher-order singularities. Nevertheless, 
systematic mesh refinement seems to favour the auxiliary-boundary approach. As 
with boundary elements the dimension of the singularity mesh is then one lower 
than that of the fluid domain, while displacement of the generating boundary offers 
advantages for evaluating derivatives at the solid surfaces (Han & Olson 1987). This 
feature is desirable in view of the formulas (3.25) for the finite-amplitude coefficients 
Ai . 

Excursion into the particle interiors necessitates the introduction of the point-source 
solution in addition to the force singularity (Dqbroi 1985). In contrast, boundary 
elements via single-layer potentials require only the latter solution. This can be 
rationalized intuitively by observing that the exact solution for Stokes or Brinkman 
flow past a sphere is just an appropriate superposition (3.34) of the point force and 
the source doublet, both placed at the sphere centre. 

In a manner significantly different from our least-squares, pseudo-boundary-element 
approach, Pozrikidis (1989b) has employed Brinkman-type singularities to obtain an 
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approximate solution of the time-dependent Stokes equations for the problem of a 
prolate spheroid vibrating along its axis symmetry (this in addition to some exact 
solutions for solid particles and droplets). His numerical procedure utilized continuous 
lineal distributions of point forces and dipoles along the focal length, the densities 
being given by truncated expansions in Chebyshev polynomials. The corresponding 
coefficients were determined by imposing the no-slip boundary conditions at an equal 
number of positions on the surface (collocation). 

Because the LSBSM algorithms for quasi-static and unsteady Stokes flow are 
exactly analogous, our description is restricted to the unsteady case. First we 
present the method for the axisymmetric problem of axial oscillations (g4.2, 4.3), 
and subsequently we describe how the scheme must be generalized to deal with the 
non-axisymmetric flow generated by transverse oscillation ($4.4). Section 4.5 develops 
formulas to express the hydrodynamic forces acting on each sphere in terms of the 
singularity strengths. The LSBSM procedure is simpler when applied to potential 
flow; this implementation is sketched very briefly in $4.6 for transverse modes. (Axial 
modes in potential flow were treated by the method of images.) Section 4.7 gives 
formulas for the velocity fields and friction coefficients corresponding to the leading- 
order reflection scheme ($3.7) that is utilized at very high frequencies. Calculation 
of the drift-force coefficients via numerical integration of (3.53) is discussed in w.8. 
Finally, in $4.9 we describe checks on the accuracy and overall consistency of our 
numerical approach. Note that explicit expressions for the singular basis functions 
appear in Appendices C and D. 

4.2. Axisymmetric singular basis functions 
For the time-dependent Stokes equations in the frequency domain - equivalently, 
the Brinkman equation with imaginary-permeability - the point force singularity of 
(vector) strength f is as follows (Howells 1974; Pozrikidis 1989~):  

(4.1) 

1 1  
S(r)*f  = -- [34yr)ii  - B(yr)fl . f ,  y 2  471r3 

A(x)  = 1 - (1 + x +x2/3)e-", 
B(x)  = 1 - (1 + x +x2)e-", 

with y defined in (3.35). At a given value of r this singularity appears like the 
dipole solution in potential flow at high frequencies such that 52; >> r-'. In the 
low-frequency limit (524 << I - ' )  the singularity approaches 

1 1  
871 r --(9 + I ) ,  

which is just the Stokeslet. The point-source solution of (scalar) strength Q is simply 

and applies also to Stokes flow and potential flow. 
Axisymmetric singular basis functions are generated by integrating the force and 

source singularities, with uniform lineal density, around circular rings centred on the 
z-axis (Pozrikidis 1989~). The flow fields {u!].~~(z, p), u ~ ] * l l ( z ,  p ) }  are resolvable in terms 
of three kinds of basis functions, respectively associated with (i) radial forces, (ii) 



368 E .  J .  Hinch and L. C. Nitsche 

Parameter set, 'PS' 1 2 

Singularity points (N) 18 34 
Intervals for azimuthal integration 12 24 

Boundary points 78 150 
Matrix: axial modes, viscous flow 300 x 98 

transverse modes, viscous flow 234 x 60 450 x 124 
transverse modes, potential flow 79 x 14 151 x 30 

156 x 50 

TABLE 2. Computational parameters for the LSBSM numerics 

axial forces, and (iii) sources at each position # around the ring: 

1 2n 
U('),II(Z, p, 4 ;  z., p.) = U'p)311 = - 

2.n S[r(z,  p, 4 ;  z., p., #)I . dp(#) d#, 1 
U ( 3 ) J  (2, p, 4 ;  Z*, p * )  = U(4).1' = L[  

2.n 

with 

r(z, p, 4 ;  z., P* ,  4') = [ z - 2.1 e, + [ P - p. cos(4 - 471 ep + [ p* 

r(z,p, 4 ;  Z., p*, #) 
- #)I e4, 

= [ p2 + p.2 - 2pp. cos(4 - #) + (z - z.)2] . 
(4.4) 

Symmetry reduces the azimuthal integrations from the interval 0 < # < 2.n to 
0 < qS < n, and ensures that the azimuthal component must vanish identically. By 
the above prescription one then obtains the following equations for the axial and 
radial components of U(i) : 

( i  = 1,2,3). Expressions for the corresponding integrands fl'),ll(#; z ,  p, z., p.), 
f:),l'(qS; z ,  p, z., p.) appear in Appendix C. Analogous formulas define the basis func- 
tions needed to evaluate b" * VV["],~~ = dv["l,ll/dz, which are required to compute the 
drift-force coefficients A,!l via (3.25). 

The integrands in (4.3) are periodic, analytic functions of @, being integrated 
precisely over one period. When applied to evaluate the right-hand sides in (4.5), the 
trapezoid integration rule therefore converges faster than any power of the step size 
(Dahlquist & Bjorck 1974, p. 300). Very accurate results were obtained with relatively 
few azimuthal subdivisions; see table 2 and figure 2. 

In the limit as the singularity ring shrinks to a point on the axis of symmetry, the 
axial-force and source solutions simply approach the corresponding point singularities, 
whereas the radial-force solution collapses to zero. For those singularity points 
lying on the z-axis the corresponding degenerate coefficients are eliminated from the 
boundary optimization. 
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FIGURE 2. Coarse and fine meshes of singularities and boundary points for L = 1, R. = 0.5; see 
table 2. (a )  Parameter set 1. (b)  Parameter set 2 

4.3. The numerical algorithm for axisymmetric $ow 
Because details of the LSBSM technique (as applied to the analogous case of axisym- 
metric Stokes flow) appear in Nitsche & Brenner (1990), we restrict our discussion to 
a brief summary. The velocity field (u! ' ]J (z, p), uF]J1 ( z ,  p) ]  is approximated by a linear 
combination of singular basis functions centred at (z,,, p,,), n = 1,.  ... N ,  

i=l n=l 

where the unknown coefficients G!)3l1 are chosen so as to minimize, in a least- 
squares sense, residuals evaluated at discrete points along the solid boundaries. 
The boundary points on each sphere were taken to lie at equal angular intervals, 
and the individual residuals were weighted so that the coefficient optimization was 
equivalent to minimizing the Simpson's rule approximation 8 of the following error 
criterion : 

Solution of the linear least-squares problem was carried out using a LINPACK QR 
algorithm (Dongarra et al. 1979, Chap. 9). Although there cannot, of course, be a net 
source of fluid within either sphere, we did not explicitly incorporate the condition 

c G?" = O inside 9;) (a = 1,2) (4.8) 
n 

into the optimization. Instead, we monitored the left-hand side as an overall check 
on consistency of the numerical results. 

If H,?J are the coefficients for the velocity field v[21Jl, then the relation (3.49) means 
that 

(4.9) 
with the singular points placed at mirror-image positions inside the two spheres and 
numbered in order of increasing (or decreasing) values of z,, whereby (ZN+I- , , ,  PN+l-n) 

H,@),ll = - G@)*ll Hf).ll = G(z)'ll H!),ll = - G('?)'ll 
N+l-n, N + l - n ,  N+l-n,  

= (-Zn,Pn)- 
The final computation parameters are summarized in table 2. 
With a fixed number ( N / 2  = 9 or 17) of singularities evenly spaced in arclength 

along the concentric auxiliary boundary of radius R. inside each sphere, trials were 
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carried out at each frequency 52 in order to optimize the choice of &(a), at least 
approximately, with respect to the boundary residual criterion (4.7). The total source 
strength, (4.8), and maximum residual were also factored into the considerations. 
Thus we arrived at the values of R listed in tables 3 and 4. At high frequencies the 
fundamental solutions were many decay lengths distant from the boundaries. This is 
not surprising if one considers, for example, that the exact solution (3.34) for a single 
vibrating sphere consists of the force singularity (4.1) together with a source doublet, 
both placed at the sphere centre: at high frequencies the point force is many decay 
lengths distant from the surface. In all cases, the number of conditions exceeded the 
number of unknowns by at least a factor of 3 in the linear least-squares optimization. 
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4.4. Extension to transverse oscillation: non-axisymmetric $ow 
Although transverse motion of the sphere@) (b'= ex) induces a non-axisymmetric 
velocity field, the azimuthal dependence can readily be factored out of the solution 
via (3.50), so that the stick boundary conditions need only be explicitly imposed on 
the generating arcs 2':) of the spheres; cf. (3.51). Thus, the LSBSM scheme, while 
somewhat more complicated in detail, is entirely analogous to that for axisymmetric 
flow. This simplifying feature has counterparts in both the multipole-collocation 
technique (Kim & Russel 1985) and the boundary element method (Karrila & Kim 
1989). 

To resolve the flow fields v['],'-(r) we now need to enlarge the set of basis functions 
(4.3) to include ring singularities composed of point forces in the azimuthal direction. 
Moreover, the lineal weighting of point forces and point sources around the rings 
must now be non-uniform, reflecting the desired azimuthal dependence of each 
velocity component, (3.50). With these considerations, the respective basis functions 
(depending on z, p, 4 ; z., p.) are specified as follows : 

Thus we obtain formulas analogous to (4.5) for the basis functions U!),l*, UF)J' and 
U$),'' (depending on (z ,  p ;  z., p.)), which refer to the azimuthal decomposition (3.50). 
The corresponding integrands f!)3*', fj'J' and f$),'-* (depending on (4; z ,  p, z., p . ) )  
are given in Appendix C. (Analogous formulas for quasi-static Stokes flow appear in 
Appendix D.) 

In the limit as p. + 0 we have 

Thus, for singularity points lying on the z-axis we remove the corresponding degen- 
erate coefficients Gf),'-, Gi?J and Glp)J from the boundary optimization. 
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The unknown coefficients G!)>l are then optimized with respect to the error criterion 

as approximated with Simpson's rule. The counterpart of (4.9) in the case of transverse 
motion is 

4.5. Frequency-dependent friction coeficient 
In order to integrate over the spectrum of frequencies in 86.4, we will require the 
frequency-dependent friction coefficient for each sphere in the linearized problem 
(3.19), (3.20). This is formally defined by integrating the normal stress over the 
surface, but can also be written quite simply in terms of the singularity strengths. 
Pozrikidis (1989b) derives such an expression, for the case of one particle oscillating 
in an infinite fluid, by taking the stress surface integral to infinity and utilizing the 
fact that the far-field behaviour is dominated by the point-force solutions. This device 
loses its utility if there are two or more particles present and one wants to find the 
force on each particle. Thus, we choose to move the surface integrals inside the 
spheres, i.e. around the poles. Furthermore, in addition to the point forces, the point 
sources also contribute to the net force. This issue did not arise for Pozrikidis, who 
constructed his solutions using source doublets (dipoles) - among other singularities 
- but not point sources. 

Using fluid incompressibility (2.4) the velocity field v can be rewritten in the form 
u = V . (uv). Together with (3.19) this means that 

V . T  = iQV*(w). 

Application of the divergence theorem then yields for the force exerted by the fluid 
on any particle, 

with Y k ( E )  a spherical surface of radius E centred at the kth singularity inside the 
particle, and n the outward-pointing normal on all surfaces. If the particle, of volume 
V,, moves (without rotation) at velocity U,  then the surface integral over Y gives 
V9U. As E + 0, only the point force (strength f k )  contributes to the stress integral 
over Y k ( e ) ,  giving -fk; there is no contribution from the point source. Conversely, 
the velocity integral over Y k ( 6 )  picks out only a term proportional to the source 
strength Qk. Thus, we find 

K K 

with ck the locations of the poles. This is Pozrikidis's formula (1989b, equation 
39) except for the additional source terms. Despite a superficial appearance to the 
contrary, the source contribution must be independent of the choice of origin from 
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which the positions ck are measured. This invariance follows from the fact that 
C,“=, Qk = 0 inside any particle. 
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In terms of the present numerical formulation, (4.13) reduces to 

where cn denotes the sum over those ring singularities that lie inside the particle 
in question. Axisymmetry precludes coupling between axial motions (b” = e,) and 
transverse motions (b’ = ex), whereby these two cases can be treated separately. 
In either case, the friction coefficient cap = Cap(L) is defined as the constant of 
proportionality between the external force exerted upon sphere CL and the velocity of 
sphere p, with the other sphere held stationary, vi2.T 

(Fj), = r:fl(u’)p, (Fx’), = C$(Ux)p (a,P = 132). (4.15) 

Because the two spheres are of equal size, there are only four independent friction 
coefficients : 

> (4.16) 

4.6. Calculations for transverse motion in potential .flow 
The numerical scheme for potential flow carries over from viscous flow ($4.4) - with 
three minor changes. 

(i) The solution involves only the source basis functions, whereby we have 
N 

w!ll’i(z,p) = c GflU!)’l(Z,p,Zn,Pfl), (4.17) 
fl= 1 

with analogous equations for the p and 4 components of w. 
(ii) The boundary conditions require only a vanishing normal component of velocity 

relative to the surfaces; no restriction is placed on the tangential component. Thus, 
the boundary criterion becomes 

(iii) In addition to the velocity field w we require the potentials themselves$ 
( w  = -V@ral,’) in order to calculate the added masses via (2.14). Factoring out the 
azimuthal dependence as before, 

@[a”i(z, p, 4) = @[,]J* (2, p)  cos 4, 

t Summation over B is supressed. 
$ These correspond to @; in the notation of 52.1. 



Nonlinear d r f t  of colloidal particles 373 
the basis functions for ( z ,  p)  are as follows: 

cos cp' d+' 
Yqz ,p ,z* ,p*)  = - (4.19) 

4n 0 [p' + PI: - 2pp* + ( z  - z.)2] f . 
We note the symmetry relation 

Hn = G N f l - n ,  (4.20) 

Finally, the surface integrals giving the virtual masses (2.14) and (2.40) reduce to 
which is the counterpart of (4.12) above. 

line integrals over the generating arcs of the spheres: 

4.7. Formulas pertaining to the rejlection solution 
Here we rewrite the reflection solution (3.37), (3.38), (3.39) in the form of $3.9 for both 
axial and transverse modes, whereby the azimuthal dependence is explicitly factored 
out as in (3.50) in the latter case. From the definitions b/ = i33i and bf = dIi  one 
ultimately obtains the following expressions, which apply when the Stokes layers are 
well separated : 

> (4.22) 

(4.23) I u['],'*(z,p) = V(o)"'(z + h,p )  + (c3/2)G(y) V(')"'(z - h,p )  
+ (E.4/2)~(y)(i + 7 - y  V ( I ) , ~ *  ( - h , p )  
+ (3e5/16) V(2),L*(z - h , p )  + O(e6), 

~[~]"'(z,p) = V(O)"*(z - h,p )  + (e3/2)G(y)V(0)~L*(z + h,p )  
- ( c 4 / 2 ) ~ ( ~ ) ( 1  + p - l  v(*)*'* ( + k P )  
+ (3e5/16) V('"''(z + h, p)  + O(e6) .  

The individual components V,'",ll ( z ,  p),  Vf),ll(z, p),  V!),l* ( z ,  p), Vf)%L* ( z ,  p),  V$)3'* ( z ,  p )  
are given in Appendix E. Using the Faxtn law for the unsteady Stokes equations, the 
frequency-dependent friction coefficients c,, cb ,  la ,  l b  can be extracted through terms 
of O(e'O) using only the multipoles appearing above (Kim & Russel 1985). 

-I/ - 1 1  -i -I 

1":/(6n) = (1 + y  + f> 1 
G(y)'(y) + 6doL(y)} (1 + + ;) + O(dl), (4.24) 
1 + y-' 

?:/(6n) = -e3G(y) (1  + e6[G(y)1'} 
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. .  

€3 
Pt / (6n)  = -G(y) 2 { 1 + g[G(y)12} (1 + y + ;) + O(C"). J 

4.8. Numerical integration for the mean force coeficients 
Once numerical solutions have been obtained for both the quasi-static (3.11), (3.12) 
and unsteady (3.19), (3.20) Stokes problems, the areal integrals (3.53) for coefficients 
Bi are transformed to bipolar coordinates, and subsequently approximated with 
Simpson's rule. The transformation from bipolar coordinates (5,q) to Cartesian 
coordinates (z,p) in the meridian plane is as follows (Happel & Brenner 1983): 

(4.26) 
c sin5 c sinhq 

Z =  
= cosh q - cost '  cash q - cos 5 

(0 I 5 I n, 0 I q I qo) ,  with 

c = (h2 - l);, (4.27) 

The metric becomes 
c3 sin5 

pdzdp = d5 dv. (coshq - cos 5)' 
Simpson's rule, with a 100 x 100 ( 5 , ~ )  mesh, was used to approximate the areal 
integrals in (3.53). 

Two limiting cases warrant further comment. Firstly, if the vorticity decay length 
is significantly smaller than half of the inter-sphere gap (non-interacting boundary 
layers), then the boundary-layer region (thickness taken as 6 = 2(2/Q) 4) is integrated 
separately in polar coordinates with a 100 x 50 (6, r )  mesh, and the bipolar integration 
is applied outside the enlarged sphere. Note that in this case, (4.27) is replaced by 

c = (h2 - (1 + S)2)h, V o  = In[(&) + ( (&)2- l ) i ] .  (4.28) 

Secondly, in the low-frequency limit ($3.8) one must resolve the far-field region 
r 2 Q-i, which contributes an O(Q) term to the volume integral. Observing that 

at large distances, it is clear that the corresponding ( 5 , ~ )  region can become small 
relative to any fixed (i.e. Q-independent) integration mesh.? Thus, when the decay 
length 6' = (2/Q)f is significantly greater than the geometric lengthscale 2h + 2, 
the original (5 ,q )  domain is subdivided into four rectangles by the perpendicular 
lines = 4c/6', q = 4c/6'. In each subregion the integration is carried out with a 
100 x 100 mesh, thereby ensuring that the far-field exponential decay zone is resolved 
with reasonable accuracy, no matter how small the corresponding area appears in the 
(L ql-plane. 

t It would be wasteful to refine the entire mesh only to have enough integration points in a tiny 
corner region and in two adjoining thin strips. 
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The line integrals (3.53), (4.21) giving the coefficients A!, A: and virtual masses 
A:, A?' are approximated with Simpson's rule using 100 subdivisions around the 
arcs LYa , (dl 

4.9. Computational details: testing of accuracy and overall consistency 
The FORTRAN implementation of the above LSBSM algorithms was streamlined 
by using the same set of boundary points to enforce, via the error criteria (4.7), (4.11) 
and (4.18), the respective boundary conditions for viscous flow (quasi-static Stokes, 
transient Stokes) and inviscid flow. In each case we also used the same number of 
singularity points,? placed at the same polar angles in each sphere; however, the 
values of R (radii of the respective auxiliary boundaries) were chosen independently 
for each hydrodynamic problem. 

Given the extensiveness and complexity of the numerical calculations, it was 
desirable to provide checks on their accuracy and consistency. Fortunately, the friction 
coefficients could be compared with values and asymptotic expressions available in 
the literature. By testing the numerical counterparts of certain theoretical relations 
involving surface or volume integrals of the various flow fields, we were able to 
(i) establish the accuracy of the numerical integrations and (ii) verify the overall 
consistency of the numerics. A summary of these considerations is given below. 

For the calculations of viscous flow at unit separation between the spheres (L  = l), 
we tested the invariance of the computed friction coefficients with respect to changes 
in the radius R. of the singularity boundary about its optimized value at each 
frequency Q. Based upon these considerations, we utilized the LSBSM scheme up 
to SZ = 256 for axial modes and up to !2 = 128 for transverse modes. At higher 
frequencies we switched to the reflection formulas from w.7. When both approaches 
applied, the respective results agreed very closely; see tables 11-13 and 55, below. 

The residuals of the boundary conditions are listed in tables 3-5 for all of the 
calculations reported in this paper. With only 18 singularity points and 78 boundary 
points at L = 1, the total error criteria 811 and &, (4.7) and (4.11), were bounded by 
3 x and the maximum deviation of the fluid velocity$ at any boundary point by 
2 x For axial modes, the net source inside each particle (4.8) was also monitored; 
it did not exceed 7 x lo-* in any case. Note that the latter check was not available 
for the transverse modes, because the cosine weighting of point sources around the 
rings (4.10) resulted in a zero net source for each individual ring. 

The Stokes friction coefficients for L = 0.2, 0.5, 1.0, 2.0 were checked against the 
boundary-multipole collocation results of Kim & MiBn (1985) as summarized in 
table 6 (6-digit accuracy at L = 0.2). By assigning the parameter y a real value instead 
of the complex value given by (3 .39 ,  we were able to compare our calculated friction 
coefficients for what was now Brinkman flow with the results obtained by Kim & 
Russel (1985) using a multipole-collocation scheme and the method of reflections. 
The axial and transverse drag coefficients XF and YF used by Kim & Russel can be 
expressed as follows in terms of our notation: 

XF = z", YF = zl, 

7 Owing to the specific basis functions and boundary conditions involved, the corresponding 

$ The residuals listed refer to unit velocity of the moving sphere. 
numbers of coefficients and constraints were, however, different for viscous us. potential flow. 
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s1 
112048 
111024 
11512 
11256 
11128 
1/64 
1/32 
1/16 
118 

112 
114 

1 
2 
4 
8 
16 
32 
64 
128 
256 

64 
128 
256 
512 
1024 
2048 
4096 
8192 
16384 
32768 

A! A: 
0.330 5.742 
0.370 5.672 
0.427 5.574 
0.506 5.431 
0.614 5.246 
0.759 4.984 
0.946 4.633 
1.172 4.178 
1.420 3.614 
1.651 2.959 
1.817 2.254 
1.871 1.564 
1.793 0.957 
1.592 0.484 
1.312 0.167 
1.011 -0.006 
0.742 -0.066 
0.531 -0.068 
0.378 -0.054 
0.267 -0.040 

0.529 -0.064 
0.375 -0.051 
0.265 -0.038 
0.188 -0.028 
0.133 -0.020 
0.094 -0.014 
0.066 -0,010 
0.047 -0.007 
0.033 -0.005 
0.023 -0.004 

BI’ 
- 1.209 
-1.204 
-1.198 
-1.190 
-1.180 
-1.170 
-1.160 
-1.153 
-1.154 
-1.165 
-1.184 
-1.201 
-1.197 
-1.146 
-1.032 
-0.863 
-0.676 
-0.505 
-0.364 
-0.254 

-0.502 
-0.362 
-0.253 
-0.171 
-0.112 
-0.070 
-0.040 
-0.020 
-0.005 
0.005 

B: 
-1.209 
- 1.204 
-1.197 
-1.189 
-1.177 
-1.162 
-1.143 
-1.117 
-1.082 
-1.034 
-0.968 
-0.883 
-0.779 
-0.658 
-0.531 
-0.416 
-0.338 
-0.296 
-0.274 
-0.260 

-0.295 
-0.272 
-0.259 
-0.250 
-0.245 
-0.241 
-0.239 
-0.237 
-0.236 
-0.235 

TABLE 12. Drift-force coefficients as functions of frequency for axial modes at L = 1. The upper 
results for s1 256 are from the LSBSM numerical method, while the lower results for s1 2 64 are 
from the reflection solution. 

with 

(1/6.)(Ca -k 56)  -k fY’ 
1 + y + y2/3 

z =  

They presented graphs of XF and YF as functions of the sphere-sphere separation 
for y = 1/10, 1, 10. Table 7 lists corresponding values of the coefficients XF and YF 
calculated with our LSBSM scheme for L = 1. These results agree with those of Kim 
& Russel, with 7-digit accuracy. 

As described in w.8, the mesh used to evaluate the integral (3.53) is modified, in 
a frequency-dependent manner, to resolve the far-field or boundary-layer structure 
of the integrand at low and high frequencies, respectively. In order to test the 
accuracy of the numerical integration scheme, we used three different meshes for the 
same integrand - namely, that obtained by inserting the quasi-static Stokes velocity 
fields into (3.53). Table 8 shows resulting values of @(O; l), B f ( 0 ;  1). Note that the 
numerical results are consistent with (3.45). 

The drift force coefficients @ and & from potential flow can calculated in two 
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B 
112048 
111024 
11512 
11256 
11128 
1/64 
1/32 
1/16 
118 

112 
114 

1 
2 
4 
8 
16 
32 
64 
128 

64 
128 
256 
512 
1024 
2048 
4096 
8192 
16384 
32768 

A: 
-2.420 
-2.414 
-2.408 
-2.400 
-2.390 
-2.374 
-2.352 
-2.3 15 
-2.255 
-2.156 
-1.998 
-1.764 
- 1.454 
-1.104 
-0.782 
-0.541 
-0.377 
-0.266 
-0.187 

-0.266 
-0.188 
-0.133 
-0.094 
-0.066 
-0.047 
-0.033 
-0.023 
-0.016 
-0.012 

A: 
-1.208 
-1.198 
-1.186 
-1.169 
-1.147 
-1.117 
-1.076 
- 1.020 
-0.947 
-0.850 
-0.726 
-0.571 
-0.391 
-0.21 1 
-0.076 
-0.008 
0.01 1 
0.013 
0.010 

0.011 
0.009 
0.007 
0.005 
0.004 
0.003 
0.002 
0.001 
0.001 
0.001 

B: Bk 
1.290 0.135 
1.287 0.131 
1.282 0.127 
1.275 0.121 
1.266 0.114 
1.253 0.106 
1.235 0.100 
1.211 0.098 
1.180 0.105 
1.141 0.126 
1.093 0.162 
1.032 0.206 
0.946 0.242 
0.824 0.254 
0.672 0.240 
0.522 0.217 
0.397 0.193 
0.297 0.172 
0.219 0.156 

0.296 0.172 
0.217 0.155 
0.158 0.143 
0.114 0.135 
0.082 0.129 
0.059 0.125 
0.044 0.123 
0.033 0.121 
0.025 0.119 
0.020 0.118 

TABLE 13. Drift-force coefficients as functions of frequency for transverse modes at L = 1.The upper 
results for 51 I 128 are from the LSBSM numerical method, while the lower results for B 2 64 are 
from the reflection solution. 

ways: (i) from the virtual masses via (2.41); and (ii) by inserting the potential velocity 
fields in place of the transient Stokes fields in the areal integrals (3.53), (Bl), (B2) 
that result from the volume integration formulas (3.25). Table 9 compares the values 
obtained with both methods. Similarly, the numerical surface integrals corresponding 
to (6.21) below were checked against the Stokes friction coefficients using (6.22), as 
indicated in table 10. Tables 8-10 establish the accuracy of the numerical integrations, 
and also confirm the consistency of the overall numerical scheme. 

5. Calculated results and discussion for oscillatory motions 
For a sphere-sphere gap equal to one radius ( L  = l), table 11 gives values of the 

friction coefficients over a wide spectrum of frequencies. At low and intermediate 
frequencies these were calculated via (4.14)-(4.16) as part of the LSBSM numerical 
scheme. In the case of well-separated Stokes layers (0 exceeding 256 and 128, 
respectively, for axial us. transverse modes), we employed (4.24) and (4.25) from the 
reflection solution. The corresponding drift-force coefficients appear in tables 12 
and 13. At those frequencies where the numerical and asymptotic solutions of the 
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FIGURE 3. Reduced nonlinear drift force (AF). as a function of frequency for in-phase (q = 0) and 
opposite-phase (cp = x) oscillations at L = 1. ( a )  Axial modes. ( b )  Transverse modes. 

unsteady Stokes equations both apply, very good agreement is observed between 
the respective results. Even for the friction coefficients r! and rt, which are much 
smaller than and tt owing to the weakness of the hydrodynamic interaction 
in the outer field, the difference amounts to less than 1%. The numerical and 
asymptotic drift-force coefficients differ by at most 4 in the (rounded) third decimal 
place. 

Figure 3 shows how the reduced mean forces of interaction (AF)!  and (AF) :  vary 
with 51 for oscillations of the spheres (i) with the same phase ((D = 0), and (ii) with 
opposite phase ((D = z) at L = 1. These quantities are also plotted as functions of L 
for 51 = 1/16,4 in figure 1; see tables 14 and 15. The reduced forces must be multiplied 
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Q = 1/16: 
L A: A: B! 

&/4 1.542 3.770 -1.169 

&/2 1.261 4.082 -1.164 

& 1.115 4.213 -1.128 

114 1.730 3.569 -1.169 

112 1.385 3.943 -1.168 

1 1.172 4.178 -1.153 

2 1.078 4.158 -1.075 

L A; 
114 2.646 

&/4 2.393 
112 2.141 

&/2 1.880 
1 1.592 
z/z 1.262 
2 0.904 

Q =4:  

0.251 -1.372 
0.395 -1.351 
0.490 -1.315 
0.524 -1.254 
0.484 -1.146 
0.365 -0.970 
0.202 -0.731 

A: B /  

B; 
-1.142 
-1.141 
-1.138 
-1.131 
-1.117 
- 1 .oa6 

B; 

-1.026 

-0.895 
-0.868 
-0.827 
-0.762 
-0.658 
-0.501 
-0.310 

TABLE 14. Drift-force coefficients as functions of separation for axial modes. 

by the Reynolds number Re = 511 in order to obtain the actual (dimensionless) forces 
(AF)" and (AF)' in (3.23). 

For all modes except transverse oscillation with opposite phase, the nonlinear drift 
force ultimately changes sign in figure 3 as frequency is reduced from the limit of 
potential flow (51 -+ 00). The actual cross-over frequencies for these three modes 
are similar, and indicate that the qualitative behaviour characteristic of inviscid, 
irrotational flow persists roughly until the Stokes layers begin to overlap. 

It is useful to compare this qualitative behaviour with the results of Tabakova & 
Zapryanov (1982a, b), who develop a singular perturbation scheme for treating steady 
streaming at high frequencies. Their problem differs from ours in two important 
respects: 

(i) Tabakova & Zapryanov consider an oscillating field at infinity incident upon 
stationary spheres, whereas our spheres oscillate with arbitrary relative phase in an 
infinite expanse of quiescent fluid. Thus, the nonlinear effect is different even when 
cp = 0 (for which our sphere-sphere gap remains constant). 

>> 1, but only requir2s 
that the Reynolds number for steady streaming (Re' = 5 1 ~ ~ )  be small, i.e. q (< 51-3 .  

In particular, the Reynolds number of the incident flow field (Re = 511) need not 
be small, and can even be asymptotically larfe. They ultimately obtain a singular 
perturbation expansion (in powers of both 5 1 - 2  and q )  which, within their prescribed 
limits, is uniformly valid in both frequency and amplitude. By contrast, we treat the 
whole spectrum of frequencies, but apply the more severe restriction q << 51-' on the 
amplitude, so that Re < 1 even when 51 is large - the case of interest in Brownian 
motion ($6.4). Ours is a regular perturbation in 1 at eachfixed value of 51. It should, 
therefore, be possible to compare the leading-order and O(q) terms at any fixed (large) 
value of 51. Unfortunately, Tabakova & Zapryanov do not give numerical values for 
their perturbation coefficients. 

(ii) Their analysis is restricted to high frequencies 
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52 = 1/16: 
A: A: B: 

-3.379 0.065 1.596 
-3.166 -0.161 1.525 
-2.915 -0.425 1.439 
-2.628 -0.718 1.335 
-2.315 -1.020 1.211 
-1.983 -1.298 1.066 
-1.649 -1.512 0.902 

A: 
-2.247 
-2.042 
-1.785 
-1.467 
-1.104 
-0.754 
-0.482 

52 =4:  

-0.044 
-0.136 
-0.210 
-0.240 
-0.2 1 1 
-0.143 
-0.074 

A: B: 
1.452 
1.352 
1.219 
1.042 
0.824 
0.595 
0.398 

B: 
-0.161 
-0.098 
-0.03 1 
0.037 
0.098 
0.143 
0.164 

B: 
0.192 
0.238 
0.271 
0.280 
0.254 
0.201 
0.135 

TABLE 15. Drift-force coefficients as functions of separation for transverse modes. 

It is interesting to note the result of Tabakova & Zapryanov that, at d = 400 and 
q = 0.033 (Re = 13.2, Re' = 0.44),t the stationary interaction has the opposite sign 
compared with potential flow. At the same frequency - but much smaller amplitude, 
such that the Reynolds number is small - we recover a mean drift force that is 
quantitatively very close to the limiting value from potential flow. This emphasizes 
the singular nature of the high-frequency limit; for, the sign of the mean drift 
interaction depends upon the order of taking the limits d -, co and q + 0. 

6. Nonlinear drift in Brownian motion 
In previous sections we have derived the time-average nonlinear drift force, (3.23), 

(3.24) and (3.53), for two spheres oscillating at given (dimensionless) frequency d and 
amplitude q. We now apply these results to the stochastic motion associated with 
thermal fluctuations in the suspending fluid. First we recall some linear theory of 
Brownian motion in order to find various (ensemble average) correlations involving 
the random forcing and thence the positions and velocities of the two particles. 
We can then integrate numerically over the spectrum of frequencies to obtain the 
net stochastic drift force. This result is later examined in $7 from the perspective 
of a general theory of small nonlinearities in the Langevin equation description of 
Brownian motion, as derived using the appropriate Lagrangian formulation. Finally 
the implications of mean nonlinear drift are discussed. We show that -with accounting 
for all fluid degrees of freedom directly excited by the translational motion of the 
particles - the thermodynamic equilibrium distribution of particles would not be 
uniform in a dilute colloidal suspension, unless one modified the random forcing of 
the Langevin equation to include a small cancelling non-zero mean part. 

therefore lies outside the range of applicability of our regular perturbation scheme. 
t In this case the amplitude is appreciable compared with the thickness of the Stokes layers, and 
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For stochastic motions, nonlinear terms represent a 'mixing' of different frequencies ; 

for, a product of two functions leads to the convolution of their respective Fourier 
transforms in the frequency domain. Our spectral integration quantifies how each 
translational disturbance mode interacts with all others to yield the observable effect, 
which is a systematic force of interaction between the two particles. This feature has 
no counterpart in the case of pure oscillatory modes. 

6.1. Dimensional formulation using stochastic particle coordinates 
To make the transition from pure oscillatory modes to stochastic disturbances, we first 
convert certain dimensionless quantities appearing in (3.14) and (3.16) to dimensional 
form, denoted with an underbar: 

Q- = aqQm, t = d t ,  V = aqoV(O), E = pa2qoF.  

Equations (3.18) and (3.21) then have the following dimensional counterparts : 

(6.1) 
4 4 ( t )  = Re{Q-(t)} = Re@-'$,O} 

V ( r , t )  = Re{Q (t)u['](r) + Q ( t )d2l(r)} ,  -1 - -2 - - 

and the relevant form of the result (3.14), (3.16) is thus 
I , -  \ 

Note that, aside from the underlined quantities, the surface and volume integrals have 
been left in dimensionless form. 

In order to deal with Brownian motion, we replace pure oscillatory quantities with 
stochastic quantities. Thus, in place of (6.1) we now have 

Here a factor of 1/(271)f has 
transform, i.e. 

Defining the Fourier transform 

been absorbed into the definition of the Fourier 

by integrating against exp(-iotJ is consistent with 
the formulation given in $3 for pure oscillations (6.1). As will be seen below, the 
stochastic mean force of interaction is given by (6.2), except with two changes: 
(i) % and are now given by (6.3) instead of (6.1); and (ii) the angle brackets 
denote ensemble-average correlations instead of time averages over one period of the 
oscillation. 

6.2. The Langevin equation with nonlinear drf t  terms 
The linear theory of Brownian motion, including the frequency-dependent friction 
law, is discussed by a number of authors, including Case (1971), Chow & Hermans 
(1974), Hinch (1975), and Russel (1981). Here we restrict our discussion to those 
elements needed to evaluate the nonlinear interaction force between the two spheres. 
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Langevin equati;, 
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The positions q ( t )  of the two spheres (of equal mass m) are governed by a stochastic 

with f , ( t )  the stochastic force acting on each sphere 01 in consequence of thermal 
fluctuations in the surrounding fluid, and & the forces due to nonlinear effects - to 
be discussed below. 

In order to account for Basset history dependence, the friction law for each motion 
ap involves a convolution against the corresponding frequency-dependent friction 
kernel Cap @>, 

(summation over p implied), where causality requires Lp(tJ to vanish for t c 0 (Case 
1971). For particles of density p(p) similar to that of the fluid, the transient effect is 
associated with the timescale on which vorticity diffuses over a distance of order the 
particle diameter (Hinch 1975). At low frequencies the quasi-static Stokes friction law 

is a good approximation, while at high frequencies virtual mass is the dominant 
contribution. The latter is clearly seen from the asymptotic behaviour of the Fourier 
transform, 

with Amp the virtual mass associated with the c$ motion, which is calculable from 
potential flow. The factor of iw explicitly shows that at high frequency the drag is 
proportional to the instantaneous acceleration instead of the velocity, leading to a 
mass ‘renormalization’ (Case 1971). 

For the case of an isolated sphere the quasi-static Stokes friction law leads to the 
following exponential form for the velocity autocorrelation : 

-as (0) - i od , ,  as o -, co, (6.7) 

In contrast, proper accounting for the full spectrum of the friction coefficients leads 
to 

with a long-tailed 121-1 asymptotic decay (Case 1971; Chow & Hermans 1974; Hinch 
1975). However, this transient effect does not significantly affect the mean-square 
displacement, which is dominated by low-frequency contributions. For this reason 
the quasi-static friction law gives the correct result for the diffusivity ; explicitly (cf. 
Batchelor 1977; Russel 1981), 

In studying dynamic light scattering of dispersions of Brownian macroparticles, 
Altenberger (1979) considers the effect of fluid inertia, but only in the linearized 
theory (frequency-dependent friction), and using the point particle approximation. 
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The nonlinear interaction force El - g2 between the two spheres, arising from the 

two nonlinear terms in (3.7) and ( 3 . Q  is given by 

Here the double primes ( t t )  denote the flow field which satisfies a test problem 
analogous to (3.1 l), (3.12) but for the transient Stokes equations; the arguments 
are otherwise analogous to those which led to (3.14) and (3.16). The asterisk (*) 
indicates a convolution product in time compounded upon the relevent vector or 
tensor product. 

To linearize the Langevin equation (6.4) we replace .fd(tJ by €&(I), subsequently 
inserting the corresponding regular perturbation expansion for qJt), 

qJl) = g y l )  + €qy(i)  + € 2 q y ( i )  + ... (a = 1,2). (6.10) 

(t) are constant in time, leaving the linear Langevin The zeroth-order displacements 
equation at first order: 

Correlating between different realizations, the sphere-sphere interaction terms are, 
on ensemble average, 

(6.12) 

with 

Note that the superscript (0) in the symbol V‘O) refers to the regular perturbation 
(3.4) and subsequent application of the reciprocal theorem (3.13) to yield (3.14) and 
(3.16). This is directly equivalent to the linearization (6.10) of stochastic particle coor- 
dinates represented by the superscript { l}. Henceforth we shall omit the superscript 
(1 )  from all quantities in the above linearized formulation, and drop the c2 factor in 
(6.1 2). 

Using the symmetry relations (4.16) one can write the Fourier transform of the 
Langevin equation (6.11) in the form 



> (6.15) 

In substituting the above expressions into equation (6.12) for the stochastic inter- 
action force, we will require the following results for the correlations of the stochastic 
forces (cf. Case 1971; Hauge & Martin-Lof 1973; Chow & Hermans 1974): 

Thus, the frequency dependence of the friction coefficients effectively ‘colours’ the 
spectrum of random disturbances, which would be white noise in the case of the simple 
quasi-static friction law. In the absence of a correlation between the components of 
the stochastic force at different frequencies (6.16) the mean drift interaction between 
the spheres becomes steady at a value given by (6.12) - but with the tensor fields T” 
and D” replaced by the the corresponding fields T’ and D’ from the quasi-static Stokes 
flow problem (3.11), (3.12). With this last input from the linear theory of Brownian 
motion we can now evaluate the nonlinear interaction force. 

6.3. Nonlinear stochastic drijit on ensemble average 
To find the mean nonlinear drift force in Brownian motion we substitute (6.13), (6.15) 
and (6.16) into (6.12). For the surface integrals on the right-hand side of (6.12) lengthy 
manipulations yield 

=A- 2pkT J - d o  J [ 9 f 1 ( w ) b . V p  + e , ( o ) b . n ]  . ~ ‘ . n d ’ r ,  (6.17) 
n --oo i o  yp) 

where (g) denotes the contribution from the boundary terms. The weight functions 
- W1(o) and e 2 ( o )  are given by 

Kl(4 = t+&4@(o) + t&$M4, z 2 w  = L R ( 4 0 ( W )  + c+&45(o), 
with 
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both even functions of o E (-00,co). The gap between the spheres is an implicit 
parameter in these equations. Referring to the pseudo-Brinkman equation (3.19), it 
is readily verified that 

uk"l(-o) = uk"l(o), uj*l(-w) = -uI"l(o), (6.18) 

from which arise the complex conjugates in (6.17). The uF1 terms lead to the 
corresponding part of the integrand in (6.17) being an odd function of w ;  thus, there 
is no contribution except for a pole at w = 0. In contrast, the up1 terms lead to 
an even function which is regular at w = 0. Letting the superscript (0) indicate 
the Stokes limit (w + 0) of the friction coefficients, and denoting by d.1 the Stokes 
velocity fields that satisfy the boundary conditions (3.20), we ultimately obtain 

This result is now brought back in dimensionless form by writing 

mw = (:LO) pa 

(6.19) 

(6.20) 

and noting the relations 
I - = pac, @ = (pa)-%, g = 

- w = ( p a ) - ' V ,  

quasi-static Stokes flow problems: 

= ( k T / 4 ( A F ) ( a ) .  

Finally, the pole term is simplified by establishing a connection with two particular 

(i) Centre-of-mass motion. Both spheres move with velocity b. 
(ii) Relative motion. Sphere 1 moves with velocity b while sphere 2 moves with 

velocity -b. 
For both cases we consider a virtual displacement ds of each sphere in the direction 
of its motion. 

The z-component of the interaction force,? 

def AFz = e, . ( F 1  - F2), 

is differentiated with respect to s in each case. Using boundary perturbation concepts 

t Here, we regard the coordinate system as fixed to the undisplaced positions of the spheres. In 
the case of shearing motion the z-axis coincides with the line of centres only when ds = 0. 

IS FLM 256 
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and the reciprocal theorem (3.13) we ultimately obtain 

E.  J .  Hinch and L. C. Nitsche 

where the superscript 'rel' denotes problem (ii). Expressing AF,'el in terms of the 
various friction coefficients, one can then write 

Equations (6.21) and (6.22) can be used to check the accuracy of the numerical 
surface integrations as well as to establish consistency between different elements of 
the computational scheme. This was done in 54.9, with reference to (6.28), below. 

Substituting (6.21) into the expression (6.19) for the boundary drift force gives 

(6.23) 

-2 2 -2 -2 
zD1 = CaR - (CaI + iznnQ) 
z D 2  = r"aR ( tar f iZnQ) - c b R z b , *  

- CaR f c b l ,  

Similar computations for the volume integral in (6.12) yield 

(ALF),,,(L) = 4 /" d a  [w, (0; L ) B ~  (Q; L) + w2p ; L)B~(Q; L)] . (6.26) 
n o  

The drift-force coefficients Ai, Bi are given by (3.25). 
By adding the contributions (6.23) and (6.26) one obtains the net nonlinear force 

of interaction. As noted above in 93.3, the distinction between boundary and volume 
effects is purely formal. It is physically more meaningful to separate the pole 
contribution at zero frequency from the spectral integrals. The former drift term is 
essentially a frictional effect '(g)', which is well understood (Russel et al. 1989, p. 86), 
whereas the latter represents the action of inertia '(9)' in the fluid. In $7.2, below, 
we will interpret both terms in more detail with reference to the dispersion equation. 
The spectral integrals (6.23) and (6.26) are consolidated using the drift coefficients Ci 
from (3.24). 

With these modifications we can now summarize the result of this section. 
The net sphere-sphere interaction force that acts, on ensemble average, owing to 
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translational Brownian modes in the direction b is given by 

with 

387 

(6.27) 

1 
I 

The crucial observation here - indeed a major result of this paper - is that the 
net stochastic drift force (AF)(g, is of 0(1) on the Brownian scale kT/a,  even though 
nonlinear effects appear only at O(Re) for each frequency in the spectrum of pure- 
oscillatory modes. This order of magnitude of the drift force can be estimated as 
the result of pressure forces p acting over an area O(a'), with pressure fluctuations 
O(pu2) in which one uses the thermal velocity u = O(kT/pa3)5. In the next section we 
evaluate this force at L = 1, for both axial (b" = e,) and transverse (b' = ex) modes. 

Although all fluctuation modes act simultaneously in Brownian motion, nonlinear 
drift exhibits no coupling between translations in the three mutually perpendicular 
directions ex, ey, e, ; this fact follows from the specific azimuthal harmonics involved 
(3.50). Moreover, the first two are equivalent owing to transverse isotropy. Thus, 
the total stochastic drift force is given by a simple superposition of the contributions 
from axial and transverse modes, 

( A 9 ) '  = 2(A9)'  + ( A 9 ) " .  (6.29) 

6.4. Applicability of the theory to colloidal particles 
Before proceeding to evaluate the spectral integral (6.28), we must first justify the 
physical assumptions whereby our results can be applied to Brownian motion in 
actual colloidal systems. We have assumed that the classical linear theory of Brownian 
motion can be applied and that nonlinear effects are small. In particular we have 
assumed that the Brownian displacements of the particles are small compared with 
the size of the particles and that the Reynolds number for the fluid motion is small. 
We have also assumed that the fluid is incompressible. Letting u and z represent the 
characteristic velocity and timescale of fluctuations, and denoting by c the velocity of 
sound in the fluid, we require the following: 

(0 small Reynolds number: ua/v << 1, 
(ii) small displacements : uz/a << 1, 
(iii) incompressibility : u / c  << 1, aL'/(cz) << 1, 

with L' = maxi 1, L}.  Equipartition of energy fixes the characteristic velocity, and for 
the characteristic relaxation time we take the inertial-viscous relaxation time (Chow 
& Hermans 1974): 

1 
u = (kT/m)Z, z = m/(67cpa). 

15-2 
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For spheres suspended in water at room temperature, one then finds that 
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aL’ _ -  - (3 x lo-’) i-’(a/ao)-’L‘, 
cz 

with a. = 0.01pm and 1 the ratio of particle to fluid density. Thus, when considered in 
an overall sense, i.e. averaged over the whole spectrum of frequencies, the assumptions 
underlying our analysis are seen to hold for colloidal particles. 

Given that the stochastic drift force ( A P ) i g )  is obtained by integrating over the 
spectrum of frequencies (6.28) we must also verify the validity of the physical as- 
sumptions (i), (ii) and (iii) for pure oscillations at each frequency. These correspond 
to the respective conditions, 

n?j << 1, (;) L’SZ << 1. (6.30) 

The dimensionless factor v/(ac) exceeds unity only when a is on the order of 
Angstroms : for oscillating colloidal particles, the characteristic velocity will never 
approach the speed of sound in the liquid (third condition) as long as the Reynolds 
number is small (first condition). The fourth condition reflects the fact that com- 
pressibility becomes important when o - 0.~2 c/(aL’). Physically, w* represents a 
period of oscillation of the same order as the time it takes for sound waves to travel 
across one radius or between the particles, whichever is larger. At unit separation 
between the spheres, L = 1, this corresponds to the following rough upper bound on 
frequency : 

for water at room temperature. 
In order to consider the first two conditions in (6.30) we must determine the 

stochastic ‘amplitude’ ?j corresponding to a given frequency Q. For this purpose 
we write the Fourier-space equation of motion that describes the response to an 
impulse of the appropriate strength at that frequency - as given by the the frequency 
correlation of the random forces (6.16). In principle, this must be done for each mode 
of motion of the two spheres: in phase us. out of phase, parallel us. perpendicular 
to the line of centres. However, one can obtain reasonable estimates more simply by 
using the frequency-dependent friction law for an isolated sphere (i.e. by neglecting 
hydrodynamic interactions). 

52’ = 1 7 ( U / a o ) ,  a. = O.01pm 

The dimensionless displacement at each frequency is given by 

The asymptotic behaviour at low frequencies then yields the following for the re- 
quirement of small displacements : 
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This places a lower bound on the frequency. The Reynolds number Re@) = Qq(Q)  
is small throughout the spectrum: Re(0) = (6n)-' = 0.053, and Re(Q) decreases 
monotonically as SZ increases. Hydrodynamic interactions between the spheres do not 
substantially alter these estimates pertaining to an isolated sphere. 

The considerations above lead to the following upper and lower bounds on the 
dimensionless frequency a, between which our theoretical formulation of nonlinear 
drift can be applied colloidal particles : 

(6.31) 

The latter, less restrictive range of validity coincides with the portion of the spectrum 
in which the integrand 3 ( Q ;  1) in (6.28) is appreciable; at higher and lower frequencies 
Z(Q; 1) is effectively negligible. Thus our formulation of stochastic drift in Brownian 
motion applies accurately to micron-size and larger colloidal particles. For particles 
an order of magnitude smaller, some correction to our theory would have to be made 
at both ends of the spectrum. But the concept of inertial drift would still apply 
qualitatively. 

0.002 << D << 170 for a = O.lpm, 0.0007 << Q << 1700 for a = lpm. 

6.5. Numerical calculation of nonlinear stochastic drijit 
Figure 4 shows the spectral weight functions Wl(Q)  and W2(Q) for both axial and 
transverse modes, at various values of the particle/fluid density ratio L. In the graphs 
these functions have been modified by a factor of Q so that one can directly visualize 
the spectral weighting with Q plotted on a logarithmic scale. This corresponds 
to writing the spectral integral (6.28) using 1nQ instead of Q as the variable of 
integration, viz. 

(AF),(L) = 4 due' [W,(e";L)Cl(e';L) + W2(eu;L)C~(e';L)1 
71 --m 

02 

= !l dueU3(e';L). 
n 

(6.32) 

The solid portions of the curves, approaching frequencies in the boundary-layer 
regime, represent the LSBSM numerical solution of the unsteady Stokes equations. 
The dotted continuations indicate values based upon the reflection solution. 

It is difficult to assign a clear physical interpretation to the spectral weights, but 
several observations are illuminating. In the limit as L -+ 00, W,(SZ;L) is seen to 
vanish, while W ,  (Q ; L)  simply approaches the spectrum of the velocity correlation 
function for an isolated sphere. Explicitly, (6.8) can be written in the form 

dmdQW,(Q;co) = due"Wl(e";co) = ~ 3/4 
1 + 2A. 

(6.33) 

Even given the relatively small sphere-sphere gap L = 1, W!(Q;  1) and Wt(Q;  1) are 
both quantitatively very similar to Wl(Q;co) (figure 4a,c) ,  while Wj(Q; 1) and 
W i ( Q ; l )  are both smaller by an order of magnitude (figure 4b,d)  Note that 
W2(51;L) = O(LP3) as L -+ 00 at any fixed frequency. Moreover, even in the 
dual limit L --+ 00, 52 I L-' (i.e. large separations with overlapping Stokes layers) 
we have W2(Q; L) = O(L-'). Thus, hydrodynamic interactions between the spheres 
do not strongly influence the spectral weighting of nonlinear stochastic drift : they 
are manifested primarily by the drift-force coefficients C! (Q; L),  Ci (a ; L),  C:(Q; L), 
C,'(Q;L), which are plotted in figure 5. 

The functions 3"(Q; 1) and &(Q; 1) from (6.28) are plotted for various values of 
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FIGURE 6. Spectrum of nonlinear drift in Brownian motion for several values of the particle/fluid 

density ratio I at L = 1. 

1 (A9q.P)  ( W h )  @ q . q  (A.");, 
0 0.112 -0.079 -0.047 0.0044 
1 0.108 -0.074 -0.041 0.0115 

0.096 -0.070 -0.043 0.0097 
2 0.077 -0.061 -0.045 0.0068 
5 0.047 -0.044 -0.041 0.0035 

TABLE 16. Inertial drift forces as functions of particle/fluid density ratio 1 at L = 1. 

1 in figure 6. We note, first of all, that increasing the density of the particles relative 
to that of the fluid shifts the spectrum of nonlinear drift toward lower frequency. 
Evidently the most rapid disturbances then have insufficient time to overcome the 
inertia of the particles. With reference to (6.31) one observes that the integrands have 
substantially 'tailed off to negligible values outside the range of frequencies indicated 
for particles 1 pm in radius. 

Based upon tables 11, 12 and 13, the functions %"(SZ;l) and IL(s2;1) were 
computed for 52 = 2-11, 2-1°, . . . , 214, 215. Simpson's rule (with the corresponding step 
size Au = A In s2 = In 2) was used to evaluate their spectral integrals (6.32) numerically. 
Table 16 indicates how the inertial drift force (AF)i9] = 2(AF)& + (AF);#) varies 
with the particle/fluid density ratio il at the separation L = 1. These values are 
dimensionless, referred to the characteristic Brownian force kT/a .  The net effect of 
inertia in the fluid is thus seen to be a repulsion between the diffusing spheres; its 
magnitude is not negligible compared with that of the well-know frictional drift force 
(AF) iF) ( l )  = -0.17 (87.2). Finally, it is important to point out that both the frictional 
and inertial drift effects are similar in strength to gravity for particles between O.1pm 
and lpm in size. 

Inaccuracies introduced by discarding the spectrum outside the interval 2-" I s2 5 
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T(D52;L) - 0(1) as D + O ,  T(D;L) - o(D-~)  as D -, co. 
The accuracy of the numerical integration itself was checked with reference to the 
autocorrelation integral (6.33). Compared with these factors, and in view of the 
accuracy of the spectral weight functions (friction coefficients - tables 6, 7, l l ) ,  the 
predominant numerical uncertainty seems to come from the drift-force coefficients ; 
an approximate bound can be inferred from tables 8, 9, 12, 13. Given (6.33), a 
reasonable estimate of 0.02 for (6C),, over the whole spectrum leads to the estimate 
(dT),,, = 0.02/(1+ 2 4  for (A%)!$, and (A%)&). The question of numerical accuracy 
is, of course, distinct from the issue of how accurately the results can be taken to 
apply to the physical situation of particulate diffusion in the colloidal regime - as was 
discussed in $6.4. The latter is evidently the limiting consideration. 

7. Nonlinear drift and the Langevin equation 
Stochastic motion of the particles, which is driven by thermal fluctuations within the 

suspending fluid, involves the whole spectrum of frequencies. Although none of these 
modes can contribute to any systematic forces or motions in a linearized description, 
this is no longer true if one accounts for nonlinear hydrodynamic effects. Section 6 
represented a synthesis of stochastic theory and frequency-dependent hydrodynamics 
to yield the net nonlinear effect of fluid disturbance modes that are directly excited 
by translational motion of the particles. Specifically, the coefficient formulas (3.25) 
tell us, at each frequency, how to combine the contributions from each region of 
the fluid. The integration over frequencies embodied in (6.28) quantifies the mutual 
interactions of all frequencies to yield the net stochastic drift force. 

Implicit in the approach of the Langevin equation is the goal of encapsulating the 
action of thermal fluctuations throughout the fluid in a stochastic equation of motion 
that involves only particle coordinates. This is possible in the linearized description 
of Brownian motion. With reference to the hydrodynamic transients responsible for 
the algebraic - as opposed to exponential - decay of the velocity correlation function, 
Hinch (1975) has shown that introducing the frequency-dependent friction kernel (6.5) 
and modified spectrum (6.16) is equivalent to a formal generalization of the Langevin 
equation that involves fluid degrees of freedom in addition to particle coordinates.? 
Thus, it is natural to ask whether or not one can incorporate nonlinear drijii forces 
into the Langevin equation as well, and thereby avoid having to implement the rather 
extensive computations presented in the preceding sections. 

At high frequencies the effects of fluid inertia can be expressed in terms of virtual 
mass coefficients. One might therefore suggest splicing the history-dependent friction 
law (6.5) together with virtual mass coefficients (2.14), (2.16) to yield a nonlinear 
Langevin equation that accounts for inertia in the fluid - at least at the upper end of 
the frequency spectrum. The main purpose of $7.1 below is to write such a stochastic 
equation of motion and compare its prediction of nonlinear drift with the more 
comprehensive theory developed in $6. 

f Evidently, only those fluid modes directly excited by motion of the particles - representing the 
diffusion of vorticity - are important as far as linear phenomena are concerned. 
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7.1. The effect of virtual mass 
In order to account for the effects of fluid inertia, we modify the traditional linear 
Langevin equation (Case 1971; Chow & Hermans 1974; Hinch 1975; Russel 198l),t 

(7.1) -1I-J m . . 2 .  + 4 1 - 1  K. .$ .  = f ,  --I 

- dt (+I M . ’ ( g & j )  - iMjk,j(2)h;ik + &j(s)Aj = f . ( t ) .  --I 

by superimposing nonlinear terms that involve the virtual mass associated with each 
particle degree of freedom, viz. 

d 
(7.2) 

We have modified the notation from (6.4) to emphasize that the generalized particle 
coordinates 2, need not coincide with the Cartesian coordinates % of individual 
particles, which we have employed thus far. Indeed, except for explicit results to be 
derived for the case of two identical spheres, the subsequent formulation is completely 
general, and applies to arbitrary geometries involving suspended particles as well as 
confining walls. 

The generalized resistance and mass tensors - K and M, respectively - include 
all degrees of freedom of the particles; note that M embodies the fixed inertia of 
each mode together with the corresponding virtual inertia of the fluid. The fact that 
the ‘masses’ now depend upon ‘position’ necessitates using Lagrange’s equations of 
motion (Goldstein 1951). In order to resolve the long-time mean drift behaviour for 
this simplified model, it is sufficient to utilize the quasi-static resistance coefficients ; 
hydrodynamic transients could be incorporated in a straightforward fashion. Note 
that the same was expressly not true in 56, where the transient behaviour itself 
(diffusion of vorticity) was responsible for nonlinear drift. 

For weak Brownian forcing (7.2) can be linearized in a manner analogous to that 
employed in $6.2. We express the position-dependent hydrodynamic coefficients E(2) 
and M(2) as Taylor expansions about the initial position, viz. 

Kij[s(t)l = Kij[2(0)] + Bk(t) - &kO)l &j,kB(0)l + . a ., etc* 

Once again the linear Langevin equation (7.1) emerges at first order -the zeroth-order 
solution being constant in time. If we assume that the stochastic force f ,  has a mean 
component &I, at second order we ultimately find the long-time behaviour 

-1 

where we have used the facts that 
(8 { l }  sj . ) = kT (K- l ) i j ,  

( &  (11 Zj * (11 ) = kT (M-l)ij 

once the initial transients have decayed (Chow & Hermans 1972; Hinch 1975). These 
represent generalized versions of ( 6 4 ,  (6.16). In particular, by taking the time 

t The fixed inertia tensor mij is represented by a diagonal matrix. 
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derivative of the former equation we see that 

Further rearrangement then yields 

or, in dimensionless form, 

(7.4) 

with 

The first term represents a purely frictional drift effect, arising from the %dependence 
of the quasi-static Stokes friction coefficients. Below we shall establish that this is 
precisely equivalent to (AFi));s,, which emerged from a pole at zero frequency in the 
comprehensive stochastic formulation ($6.3). The second drift force represents the 
systematic effect of virtual mass; an alternative derivation of this term appears in 
Rallison (1979). In order to determine how well the simple virtual-mass approximation 
captures the influence of inertia over the whole spectrum (not just at high frequencies), 
we shall ultimately compare (As);&, with (AF);* from $6.5. 

It is convenient to choose the generalized coordinates 9i in such a fashion as to 
diagonalize the matrix representations of K and M. To this end we take 

(7.6) I 9, = x1 - x2, 9 2  = Y1 - Y2, 

9 3  = z1 - z2, 9 4  = x1 + x2, 
95 = Yl + Y2, 9 6  = z1 + z2, 

where we have restricted the considerations to translational degrees of freedom. 
In evaluating derivatives with respect to the 9i we choose to keep the coordinate 
system fixed in space,? considering displacements d9i about ( 9 1 , 9 2 ,  93, 94, 9 6 )  = 
(O,O, --L - 2,0,0,0) The diagonal form of K in these coordinates is then somewhat 
deceptive, because it applies only when 91 = 92 = 0. Explicitly, 

The friction tensor K(0, 0, appears as a diagonal matrix because 

(AF)ij(0,0,93) = 0, (ZF)ij(0,0,93) = 0 for i # j .  

The inverse of K can therefore be computed simply be inverting the elements on the 
diagonal : 

But in order to evaluate K , ,  =: VK we must include the off-diagonal elements, whose 

f The alternative would be to tie the z-axis to the line of centres. This would preserve diagonality 
of the matrix representations, but with the complication of a I-dependent coordinate system, which 
we wish to avoid. 
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derivatives do not vanish when L21 = 2?2 = 0. Straightforward calculations using the 
relations 

(with L = -2?3 - 2) ultimately show that 

= [2 (A9)& + ( A S ) " ]  = $ (A9)iF).  (7.10) 

All other components (i = 1,2,4,5,6) must vanish. The factor i arises in distinguishing 
between (i) the generalized force acting on the generalized coordinate .2!3, and (ii) the 
difference between the (axial) hydrodynamic forces acting on the two spheres. Thus, 
this frictional drift force agrees with the corresponding result (6.28) from 56.3. 

Only the diagonal form of M (corresponding to 2,  = 212 = 0) arises in evaluating 
the drift force (93);A), whereby det M is obtained simply by multiplying the elements 
on the diagonal : 

A direct computation yields 

1 d(detM) 

2 dMii 

(93)b) = dGJ3 
1 dM33 2 dMa + --I 1 dM66 + -- + -- M33 dL Mu dL Ma dL 

(7.11) 

(7.12) 

cf. (2.41), from which the nonlinear drift force (9:);) due to virtual mass can be 
obtained using table 1. Table 16 compares ( A 9 ) ( A ) =  2(F3) iA)  with for 
several values of the particle/fluid density ratio 1. It is seen that considerations 
of virtual mass do not accurately reflect the action of fluid inertia over the whole 
spectrum of frequencies : (AF)iA) is attractive instead of repulsive, and underestimates 
the magnitude of (AS) i4 .  
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7.2. Nonlinear drift and the dispersion equation 
For colloidal particles we can neglect the relaxation time in velocity space. Thereby, 
the dispersion equation for the probability density P can be constructed in a well- 
known manner? from considerations of transition probabilities. Under very general 
assumptions regarding the particle-fluid geometry, one obtains the dimensionless 
dispersion equation, 

where the appropriate form of the Langevin equation is used to evaluate the long-time 
mean moments. The latter is proportional to the diffusion dyadic, 

--(9&?j) I d  = ( l q i j ,  
2 dt 

and is not affected by nonlinear drift. The new element here is that the drift velocity 
d(.J/dt = (ii) includes a term due to inertia in the fluid, in addition to the usual 
frictional term. Explicitly, 

with (Fm)ix) the inertial drift force computed in $6 (which arises from zero-mean 
random forcing) and Ff} a possible non-zero mean component of the random force. 
The inertial part of (4;) immediately gives rise to the divergence of a flux when it is 
introduced into the dispersion equation. More work is required, however, in order to 
bring the frictional part into a similar form. Starting from the identity 

Oinl  = (ain) , l  = [ ( K - ' )  im K m n ]  ,I = ( K - ' )  im,l K m n  + (K- ' )  im K m n , l  

it can be shown that 

The mean drift velocity can then be written in the following simpler form: 

Thus, thefrictional drift velocity (K- ' ) i j , j  is seen to be precisely that term which must 
be combined with the right-hand side of (7.13) to yield the divergence of the diflusiue 
flux when diffusivity depends upon (generalized) position, viz. 

We are now in the position to consider how nonlinear drift could result in equilibrium 
distributions of probability density that are non-uniform. For our problem involving 
two spheres of equal size, all coordinates except 2i'3 represent unimportant degrees of 
freedom, whereby the steady-state version of (7.14) yields 

P,3 - ( ( A F ) i y ,  + @'}) P = C, (7.15) 

t See e.g. reprints of the original papers of Uhlenbeck & Ornstein (1930) and Chandrasekhar 
(1943) in the compilation by Wax (1954). 
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for some constant C which represents the total flux in the coordinate 2?3 at equilibrium. 
The (rigid) spheres cannot penetrate each other when they touch, so that C must be 
zero. Changing variables from 2$ to L = -2?3 - 2, we find the following equilibrium 
pair distribution function for a dilute, monodisperse dispersion of colloidal particles : 

(7.16) 

with P, the bulk number density of particles (the limit of P as L -+ 00). In 56 we 
carried out the (extensive) calculations required to obtain the inertial drift force at 
one separation, L = 1. By the above prescription, one should find (AF)iy)(L)  at 
sufficiently many values of L to enable at least an approximate evaluation of the 
integral in (7.16). 

7.3. Concluding remarks 
The fluid forces on Brownian particles fluctuate in time due to the discrete molecular 
nature of the fluid. In the Langevin description the fluid forces are split into a 
frictional term on the left-hand side of the momentum equation and a random forcing 
term placed on the right-hand side. The frictional term is calculated for the particle 
motion in a smooth continuum fluid. In the linear theory of the random motion of the 
Brownian particles the random force must have zero mean value to avoid a systematic 
drift and has the magnitude of its fluctuations set by a fluctuation-dissipation theorem 
(which can be derived by requiring that the resulting particle motion has a thermal 
energy i kT  for each degree of freedom). In the weakly nonlinear theory there are 
obvious contributions from the nonlinear theory for the continuum fluid. One must 
also consider the possibility of a non-zero mean component of the random forcing 
F--12). We note that in order to maintain the fluctuation-dissipation theorem in the 
presence of small nonlinear effects the random forcing needs some small corrections, 
but these occur at the third order and do not include a mean component (cf. El-Kareh 
& Leal 1993). 

If one assumes that there is no mean component of the random forcing, 9{2} = 0, 
then the nonlinear effects from the continuum fluid will make the probability density 
non-uniform for the relative separation of two equal spheres, (7.16). Now there 
are good statistical mechanical reasons for expecting that this probability density is 
uniform. To produce a uniform distribution one must clearly set the mean random 
force to cancel the mean inertial drift force from the continuum fluid 

g l 2 )  = - (A$) ;-q. (7.17) 

Note that the mean part of the random force does not cancel all the mean drift force 
from the continuum fluid: the mean friction drift force ( A 9 ) ( , F )  is required to turn 
the probabilistic dispersion equation (7.13) into a Fickian diffusion process (7.14). 

One must therefore decide whether or not the probability density should be uniform. 
Non-uniform distributions can occur in thermodynamic equilibrium and can be 
correctly predicted by the nonlinear drift force (7.5). A single Brownian particle 
moving in a finite container will have a uniform distribution in terms of Cartesian 
coordinates but an appropriate non-uniform distribution in terms of other generalized 
coordinates, correctly given as P cc [detM(Z!)]f by (7.5) in (7.15). Similarly a rigid 
trumbbell (or trimer) consisting of two particles joined to a third by two freely hinged 
rigid connectors has a non-uniform distribution of the included angle (Rallison 
1979), which can be derived from standard statistical mechanical integration over the 
momenta of a Maxwellian distribution or from our Langevin equation with F{2} = 0. 
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In the case of two Brownian spheres in a suspension, we believe that the probability 
density of their separations should be uniform. The number of configurations of the 
fluid molecules would seem not to depend on the separation of the Brownian particles 
since it depends only on the volume available to the fluid so long as the Brownian 
particles are much larger than the fluid molecules. (We note that a number of 
standard analyses in statistical mechanics logically cannot address this question after 
they decouple the ‘bath’ in a small-mass approximation: the small mass of the 
individual fluid molecules times their large number displaced by a Brownian particle 
may not always be negligible.) The many experimental measurements of suspensions 
have never reported any anomalies which would question the assumed uniformity of 
the probability distribution in thermodynamic equilibrium, although a complicated 
compensation must first be made for other known interaction forces. Thus we 
tentatively conclude that when the Langevin equation is used to describe a suspension 
of interacting particles, as in computer simulations of non-thermodynamic equilibrium 
processes like shear flow, the random force has a non-zero mean component given 
by (7.17). We speculate that the need for this non-zero mean component is related to 
the constraint that the fluid is attached to the particles, just as the constraint of the 
rigid connectors of the trumbbell is the source of its non-uniform distribution. 

It was pointed out in the introduction that there is no well-established general 
theory of nonlinear fluctuations to which we can appeal. Were it the case that a 
single Brownian impact displaced a particle through several diameters or that the 
thermal motion were at a high Mach number or at a high Reynolds number, then 
there would be serious difficulties in constructing a suitable theory for such strongly 
nonlinear fluctuations. On mathematical grounds, van Kampen (1981, p. 244) has 
argued that in these circumstances squares of delta functions would occur and would 
be meaningless. And on physical grounds, it is not clear that one would have the right 
to define a temperature for thermodynamics or that the most probable state would 
be close to the majority of instantaneous states for statistical mechanics. Fortunately 
colloidal systems necessarily have only small fluctuations, as estimated in $6.4, with 
small Brownian displacements compared with the size of the particles and small 
Reynolds and Mach numbers. For the small fluctuations of the real world, one may 
expect that a theory of nonlinear fluctuations can be constructed which is but a small 
and regular perturbation of the classical and successful linear theory, for otherwise 
the linear theory would be isolated from the real world. In order not to disturb the 
experimentally tested predictions of the linear Langevin theory, one can only make 
small changes to the amplitude and frequency spectrum of the random forcing. Such 
small changes yield small corrections to the successful predictions of the diffusivity 
and velocity autocorrelation function. Such small changes also yield relatively small 
changes to the steady drift. The only way to change the steady drift significantly 
while preserving the diffusivity and the velocity autocorrelation function is to modify 
the zero-frequency component of the random forcing. In the linear theory one needs 
zero mean force in order to ensure that the random walk has no mean motion. To 
preserve the absence of mean motion in the slightly nonlinear theory, it is essential 
to have a small mean component of the random forcing. 

Throughout this paper we have restricted our discussion of stochastic motion to 
translational modes of the two identical spheres. These two-particle calculations 
could be generalized in four directions: (i) rotary modes of the spheres, (ii) spheres 
of different sizes, (iii) non-spherical particles, and (iv) fluid degrees of freedom which 
do not directly excite particle modes. These aspects are discussed in turn below. 

In contrast to translational fluctuations, rotary fluctuations of the spheres would 
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not lead to displacements of the boundaries. According to the spectral theory of @ 3 
and 6, there would be no boundary drift force (therefore no frictional contribution 
like ( A 9 ) & )  from a pole at zero frequency), and the volumetric effect of nonlinearities 
would be manifested in a manner analogous to (3.25), (6.28). Thus, the rotary drift 
force would be purely inertial; it would decay to zero with decreasing thickness of 
the Stokes layers as 52 + co, because there is no virtual mass associated with the 
rotation of spheres in potential flow. For the same reason, rotary modes would not 
appear at all in the nonlinear Langevin equation of $7.1. This difference emphasizes 
the importance of capturing the effects of fluid inertia over the entire spectrum of 
random motion, not just virtual mass at infinite frequency. 

For two spheres of unequal size, nonlinear drift would generally result in a net force 
on the pair in addition to the relative force of interaction. The analysis of nonlinear 
drift would, of couse, become much more complicated in the case non-spherical 
particles. Rotary modes would be as important as translational modes at high 
frequencies, and one would have to consider translational-rotational coupling. Even 
given fixed orientations of the particles, nonlinear drift effects due to translational 
modes in perpendicular directions would no longer be decoupled, in general. 

The issue of fluid degrees of freedom is more subtle, and bears upon the very 
approach of the Langevin equation. Consider an experiment in which an external 
device animates suspended particles in a random fashion. There is no question that 
this stochastic process would be described by the Langevin equation (6.11), with the 
spectrum of random forcing determined by the forcing apparatus. In particular, only 
those fluid modes associated with the diffusion of vorticity away from the particles 
would be excited, and the action of that restricted set of modes is represented entirely 
by the history-dependent friction kernel (6.5) written in particle coordinates. But in 
Brownian motion the fluctuating force comes from the suspending fluid itself. Explicit 
cognizance of this fact is given in the linear Langevin equation via (6.16), whereby 
the spectrum of forces is modified from white noise using the frequency-dependent 
friction law. As far as linear phenomena are concerned, the linear friction effectively 
captures the effects of fluid degrees of freedom. 

However, when it comes to nonlinear drift it must be recognized that an average 
force of interaction between particles can be induced by fluid modes which vanish 
on the solid surfaces (Tabakova & Zapryanov 1982 a,b) ,  i.e. modes which are not 
excited by motion of the particles. These disturbances are present owing to thermal 
fluctuations throughout the fluid. In principle one should consider all such modes, 
calculating the resulting drift-force spectra via (3.25) and (6.28) - there being no finite- 
amplitude effect of changing geometry in the absence of motion of the boundaries. 
As a first step, one could treat the problem of a fluctuating point force in an arbitrary 
location within the fluid, with the particles held fixed. In this connection it is relevant 
to mention the work of Riley (1987) on acoustic streaming induced at the surface of 
a stationary cylinder by a parallel acoustic line source. 
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